BEV におけるレーダー・カメラ間データセット融合に関する実験的研究

BEV におけるレーダー・カメラ間データセット融合に関する実験的研究

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転載したものです。転載については出典元にお問い合わせください。

原題: 鳥瞰図におけるレーダーとカメラの融合に関するデータセット間実験的研究
論文リンク: https://arxiv.org/pdf/2309.15465.pdf
著者所属機関: オペル自動車株式会社 ラインラント=プファルツ工科大学 カイザースラウテルン=ランダウ ドイツ人工知能研究センター

論文のアイデア:

mmWave レーダーとカメラの融合システムは、補完的なセンサー情報を活用することで、先進運転支援システムや自動運転機能に非常に堅牢で信頼性の高い認識システムを提供できる可能性があります。カメラベースの物体検出における最近の進歩により、ミリ波レーダーカメラと鳥瞰図の特徴マップを融合する新たな可能性が生まれています。本稿では、新しい柔軟な融合ネットワークを提案し、nuScenes と View-of-Delft の 2 つのデータセットでそのパフォーマンスを評価します。私たちの実験では、カメラ部門では大規模で多様なトレーニング データが必要であるのに対し、mmWave レーダー部門では高性能 mmWave レーダーからより多くのメリットが得られることがわかりました。この論文では転移学習を使用して、より小さなデータセットでのカメラのパフォーマンスを向上させます。さらに、私たちの結果は、mmWave レーダーとカメラの融合アプローチが、カメラのみおよび mmWave レーダーのみのベースラインを大幅に上回ることを示しています。

ネットワーク設計:

3D オブジェクト検出における最近の傾向は、画像の特徴を共通の鳥瞰図 (BEV) 表現に変換することです。これにより、複数のカメラ間の融合や距離センサーの使用に使用できる柔軟な融合アーキテクチャが提供されます。本研究では、もともとレーザーカメラ融合に使用されていた BEVFusion 法を拡張して、ミリ波レーダーカメラ融合を実行します。提案された融合方法は、選択された mmWave レーダー データセットでトレーニングおよび評価されます。いくつかの実験で、各データセットの長所と短所について説明します。最後に、本論文では移行を適用してさらなる改善を実現します。

図1 BEVFusionに基づくBEVミリ波レーダーカメラ融合フローチャート。生成されたカメラ画像には、投影された mmWave レーダー検出と地上真実境界ボックスが含まれます。

この記事では、 BEVFusionの融合アーキテクチャについて説明します。図 1 は、BEV におけるミリ波レーダーとカメラの融合を提案するネットワークの概要を示しています。融合は、BEV 内でカメラと mmWave レーダー機能が接続されたときに発生することに注意してください。以下、この記事では各ブロックの詳細について説明します。

A. カメラエンコーダーとカメラからBEVへのビュー変換

カメラエンコーダとビュー変換は[15]のアイデアを採用しており、任意のカメラの外部パラメータと内部パラメータの画像BEV特徴を抽出できる柔軟なフレームワークである。まず、tiny-Swin Transformer ネットワークを使用して各画像から特徴を抽出します。次に、[14]のLiftとSplatのステップを使用して、画像の特徴をBEV平面に変換します。このため、高密度深度予測の後にルールベースのブロックが続き、そこで特徴が疑似ポイント クラウドに変換され、ラスタライズされて BEV グリッドに蓄積されます。

B. レーダーピラー特徴エンコーダ

このブロックの目的は、mmWave レーダー ポイント クラウドを、画像 BEV 機能と同じグリッド上の BEV 機能にエンコードすることです。この目的のために、本論文ではピラー特徴エンコーディング技術[16]を使用して、点群を無限に高いボクセル、いわゆるピラーにラスタライズします。

C. BEVエンコーダ

[5]と同様に、mmWaveレーダーとカメラのBEV機能はカスケード接続で融合されています。融合された特徴は、ジョイント畳み込み BEV エンコーダーによって処理され、ネットワークが空間的なずれを考慮し、異なるモダリティ間の相乗効果を活用できるようになります。

D. 検出ヘッド

この論文では、CenterPoint 検出ヘッドを使用して、各クラスのオブジェクト中心のヒートマップを予測します。さらに回帰ヘッドは、オブジェクトのサイズ、回転、高さ、および nuScenes の速度とクラス属性を予測します。ヒートマップはガウス焦点損失を使用してトレーニングされ、残りの検出ヘッドは L1 損失を使用してトレーニングされます。

実験結果:

引用:

Stäcker, L., Heidenreich, P., Rambach, J., & Stricker, D. (2023). 鳥瞰図におけるレーダーカメラ融合のデータセット間実験研究。ArXiv. /abs/2309.15465

オリジナルリンク: https://mp.weixin.qq.com/s/ayZl9tnm47y9VpfgmIG2qg

<<:  AIGC に向けてビジネスを準備するために CIO が尋ねるべき 8 つの質問

>>:  計算負荷の少ない BEV モデルのパフォーマンスを向上させるにはどうすればよいでしょうか?おそらく DistillBEV が答えでしょう!

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

...

機械学習のパフォーマンスを最適化するために必要な 6 つの指標

実行している機械学習の種類に応じて、モデルのパフォーマンスを測定するために使用できるメトリックは多数...

人工知能の主要技術:強化学習(RL)

人工知能技術はますます急速に進歩しており、それぞれのサブテクノロジーが生み出す価値もますます顕著にな...

誇張か革命か?産業メタバースの4つの大きなトレンド

産業用仮想世界は、製造業者がすでに進めているデジタル変革を補完できるでしょうか? メタバースについて...

PHP 再帰アルゴリズムとアプリケーションの紹介

PHP は動的な Web ページを開発するための最適なテクノロジーです。プログラミングに役立つ基本的...

CVPR 2017 論文の解釈: フィーチャーピラミッドネットワーク FPN

論文: 物体検出のための特徴ピラミッドネットワーク論文アドレス: https://arxiv.org...

...

レオナルド・ダ・ヴィンチに私の肖像画を描いてもらいました! Google の新しいテクノロジーにより、ワンクリックでクラシックが復活

レオナルド・ダ・ヴィンチ、ルーベンス、アンディ・ウォーホルが描いた自分の肖像画をもらったらどんなだろ...

人工知能の時代では、機械学習とAIアルゴリズムが「80/20ルール」を変えるだろう

[[186517]]ハーバード・ビジネス・レビューは、機械学習と AI アルゴリズムの進歩により、私...

フレームワークがシャム自己教師学習を統合、清華大学とセンスタイムが効果的な勾配形式を提案

[[443228]]現在、自己教師あり学習は、手動によるラベル付けを必要とせずに強力な視覚特徴抽出機...

データ汚染を防ぐのは困難です。機械学習モデルに「悪いことを学習」させないでください

過去 10 年間、クラウド コンピューティングの普及により、多くの企業に高性能コンピューティングおよ...

「編集神ヴィム」の父が死去。ネットユーザー「彼は多くの人の人生を変えた」

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

Java ソートアルゴリズムの概要 (V): マージソート

マージソートとは、2つ(またはそれ以上)の順序付きリストを新しい順序付きリストにマージすることです。...

KPMG: 大企業における AI 活用の 8 つのトレンド

概要: KPMG の新しいレポートでは、大企業がどのように人工知能と機械学習の技術に投資し、導入して...