BEV におけるレーダー・カメラ間データセット融合に関する実験的研究

BEV におけるレーダー・カメラ間データセット融合に関する実験的研究

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転載したものです。転載については出典元にお問い合わせください。

原題: 鳥瞰図におけるレーダーとカメラの融合に関するデータセット間実験的研究
論文リンク: https://arxiv.org/pdf/2309.15465.pdf
著者所属機関: オペル自動車株式会社 ラインラント=プファルツ工科大学 カイザースラウテルン=ランダウ ドイツ人工知能研究センター

論文のアイデア:

mmWave レーダーとカメラの融合システムは、補完的なセンサー情報を活用することで、先進運転支援システムや自動運転機能に非常に堅牢で信頼性の高い認識システムを提供できる可能性があります。カメラベースの物体検出における最近の進歩により、ミリ波レーダーカメラと鳥瞰図の特徴マップを融合する新たな可能性が生まれています。本稿では、新しい柔軟な融合ネットワークを提案し、nuScenes と View-of-Delft の 2 つのデータセットでそのパフォーマンスを評価します。私たちの実験では、カメラ部門では大規模で多様なトレーニング データが必要であるのに対し、mmWave レーダー部門では高性能 mmWave レーダーからより多くのメリットが得られることがわかりました。この論文では転移学習を使用して、より小さなデータセットでのカメラのパフォーマンスを向上させます。さらに、私たちの結果は、mmWave レーダーとカメラの融合アプローチが、カメラのみおよび mmWave レーダーのみのベースラインを大幅に上回ることを示しています。

ネットワーク設計:

3D オブジェクト検出における最近の傾向は、画像の特徴を共通の鳥瞰図 (BEV) 表現に変換することです。これにより、複数のカメラ間の融合や距離センサーの使用に使用できる柔軟な融合アーキテクチャが提供されます。本研究では、もともとレーザーカメラ融合に使用されていた BEVFusion 法を拡張して、ミリ波レーダーカメラ融合を実行します。提案された融合方法は、選択された mmWave レーダー データセットでトレーニングおよび評価されます。いくつかの実験で、各データセットの長所と短所について説明します。最後に、本論文では移行を適用してさらなる改善を実現します。

図1 BEVFusionに基づくBEVミリ波レーダーカメラ融合フローチャート。生成されたカメラ画像には、投影された mmWave レーダー検出と地上真実境界ボックスが含まれます。

この記事では、 BEVFusionの融合アーキテクチャについて説明します。図 1 は、BEV におけるミリ波レーダーとカメラの融合を提案するネットワークの概要を示しています。融合は、BEV 内でカメラと mmWave レーダー機能が接続されたときに発生することに注意してください。以下、この記事では各ブロックの詳細について説明します。

A. カメラエンコーダーとカメラからBEVへのビュー変換

カメラエンコーダとビュー変換は[15]のアイデアを採用しており、任意のカメラの外部パラメータと内部パラメータの画像BEV特徴を抽出できる柔軟なフレームワークである。まず、tiny-Swin Transformer ネットワークを使用して各画像から特徴を抽出します。次に、[14]のLiftとSplatのステップを使用して、画像の特徴をBEV平面に変換します。このため、高密度深度予測の後にルールベースのブロックが続き、そこで特徴が疑似ポイント クラウドに変換され、ラスタライズされて BEV グリッドに蓄積されます。

B. レーダーピラー特徴エンコーダ

このブロックの目的は、mmWave レーダー ポイント クラウドを、画像 BEV 機能と同じグリッド上の BEV 機能にエンコードすることです。この目的のために、本論文ではピラー特徴エンコーディング技術[16]を使用して、点群を無限に高いボクセル、いわゆるピラーにラスタライズします。

C. BEVエンコーダ

[5]と同様に、mmWaveレーダーとカメラのBEV機能はカスケード接続で融合されています。融合された特徴は、ジョイント畳み込み BEV エンコーダーによって処理され、ネットワークが空間的なずれを考慮し、異なるモダリティ間の相乗効果を活用できるようになります。

D. 検出ヘッド

この論文では、CenterPoint 検出ヘッドを使用して、各クラスのオブジェクト中心のヒートマップを予測します。さらに回帰ヘッドは、オブジェクトのサイズ、回転、高さ、および nuScenes の速度とクラス属性を予測します。ヒートマップはガウス焦点損失を使用してトレーニングされ、残りの検出ヘッドは L1 損失を使用してトレーニングされます。

実験結果:

引用:

Stäcker, L., Heidenreich, P., Rambach, J., & Stricker, D. (2023). 鳥瞰図におけるレーダーカメラ融合のデータセット間実験研究。ArXiv. /abs/2309.15465

オリジナルリンク: https://mp.weixin.qq.com/s/ayZl9tnm47y9VpfgmIG2qg

<<:  AIGC に向けてビジネスを準備するために CIO が尋ねるべき 8 つの質問

>>:  計算負荷の少ない BEV モデルのパフォーマンスを向上させるにはどうすればよいでしょうか?おそらく DistillBEV が答えでしょう!

ブログ    
ブログ    
ブログ    

推薦する

Facebookが削除した10億の顔情報は、インターネット上の単なる「データゴミ」だ

[[433430]] Facebook が名前を Meta に変更し、Metaverse への本格的...

ThunderSoft の Sun Li: AI 対応産業の課題と解決策

[51CTO.comからのオリジナル記事] 現在、人工知能はセキュリティ、金融などのサブセクターを強...

マイクロソフトがAIインフラサービスコード名「Singularity」を発表

Microsoft Azure と研究チームは協力して、コードネーム「Singularity」という...

...

人工知能がインダストリー4.0における製造業に革命をもたらす

人工知能 (AI) という用語は、流行語の地位を超え、業界全体にわたる技術革新の基礎となっています。...

...

APIなしでは「AI」が成功できない理由

クラウド、携帯電話時代、メタバース、そして現在の人工知能などのテクノロジーのトレンドはすべて、表面下...

米国は自動運転に関する最も厳しい新規制を発行:L2〜L5を完全にカバー、今月30件のテスラ事故が調査された

[[408307]] IT Homeは6月30日、米国東部時間6月29日に米道路交通安全局(NHTS...

...

ロボットは人間と機械の協働チームの「リーダー」になれるでしょうか?どのように機能しますか?

ロボット技術の発展により、ロボットは実生活においてますます重要な役割を果たすようになるでしょう。人間...

2018 Baidu AI 開発者会議: Robin Li が「誰でも AI ができる」を提唱

7月4日、世界初のAI開発者カンファレンス「Baidu Create 2018」が2年目を迎えました...

...

研究報告によると、GPT-4の「知能」は大幅に低下している

7月20日、スタンフォード大学とカリフォルニア大学バークレー校の研究チームが最近GPT-4の詳細な研...

パスワードを解読する方法: 暗号ハッシュアルゴリズムの識別

Q: パスワードのビットシーケンスから暗号化アルゴリズムを識別することは可能ですか? A: 外部ソー...