背景今日のデータ爆発の時代では、言語モデルのトレーニングはますます複雑かつ困難になっています。効率的な言語モデルをトレーニングするには、膨大なコンピューティング リソースと時間が必要です。しかし、これは多くの人にとって現実的ではありません。同時に、特にエッジデバイス上で、限られたメモリとコンピューティング リソースで大規模な言語モデルをどのように使用するかという課題にも直面しています。 今日は、GitHub のオープンソース プロジェクト jzhang38/TinyLlama をお勧めしたいと思います。このプロジェクトは、GitHub で 4.3k を超えるスターを獲得しています。このプロジェクトは、1 文で紹介できます。「TinyLlama プロジェクトは、3 兆個のトークンで 11 億個の Llama モデルを事前トレーニングするオープンな取り組みです。」 プロジェクト紹介TinyLlama は、3 兆個のトークンで 11 億個の Llama モデルを事前トレーニングすることを目指しています。適切な最適化により、16 個の A100-40G GPU を使用してわずか 90 日でこの目標を達成することができました。このプロジェクトは、Llama 2 とまったく同じアーキテクチャとトークナイザーを使用しているため、TinyLlama をプラグインして、多くのオープンソースの Llama ベースのプロジェクトに使用することができます。さらに、TinyLlama はパラメータが 11 億個しかないため、非常にコンパクトです。このコンパクトさにより、計算とメモリのフットプリントを制限する必要がある多くのアプリケーションに適しています。 使い方モデルを直接ダウンロードして使用することも、huggingface を通じてデモを使用することもできます。 ご自身でトレーニングをご希望の場合は、以下のトレーニング詳細をご参照ください。 プロジェクト推進TinyLlama は、いくつかの重大な問題を積極的に解決しており、オープンソース コミュニティで大きな注目を集めている、エキサイティングなオープンソース プロジェクトです。 以下は、プロジェクトのスタートレンドチャートです(プロジェクトのアクティビティを表します)。 プロジェクトの詳細については、以下のリンクをご覧ください。 オープンソースプロジェクトのアドレス: https://github.com/jzhang38/TinyLlama オープンソース プロジェクト作成者: jzhang38 プロジェクト構築に関わるメンバーは以下の通りです。 |
>>: 見事な! ! !テスラのエンドツーエンドのデモンストレーションビデオ分析
二足歩行ロボットは高価で複雑、そして壊れやすい。バランスという観点で言えば、二足歩行は四足歩行よりは...
人工知能が20年間進歩したにもかかわらず、オフィスワークのほとんどは単純な頭脳労働で構成されているよ...
スマートシティが到来します。人工知能 (AI)、拡張現実 (AR)、モノのインターネット (IoT)...
最近、IBM は主要な GPU よりも 14 倍効率の高い新しい 14nm アナログ AI チップを...
過去 2 年間で最もホットな話題は何かと聞かれれば、人工知能は間違いなくそのリストに載るでしょう。金...
Python には、リスト、セット、辞書など、非常に便利な組み込みデータ構造が多数あります。ほとんど...
11月11日、中国ハイテクフェア2020が深センで開催されました。ファーウェイクラウドコンピューティ...
この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...
コロナウイルスのパンデミック以前、AI業界は2020年に大きな成長を遂げると予想されていました。 2...
わが国の著名な学者である周海中氏は、1990年代に「科学技術の進歩により、人工知能の時代が到来しよう...
Java 開発において、一見単純な質問ですが、インターネット上には多くのトピックや質問があります。...