採血時に血管が見つからない?人工知能には解決策がある

採血時に血管が見つからない?人工知能には解決策がある

[[318810]]

ビッグデータダイジェスト制作

出典: rutgers.edu

編纂者:張大毓如、夏亜偉

採血時に静脈が見つからない看護師のジョークを聞いたことがある人も多いと思いますが、これは本当にあった話で、かなり痛々しい話です。

しかし今では、ロボット工学、人工知能、近赤外線および超音波画像技術を組み合わせて血液を採取したり、カテーテルを挿入して液体や薬剤を投与したりする装置をラトガース大学のエンジニアが開発したおかげで、そのような状況は回避できるようになった。

『ネイ​​チャー・マシン・インテリジェンス』誌に掲載されたこの研究は、画像誘導ロボット装置などの自律システムが、いくつかの複雑な医療作業において人間を上回る能力を発揮する可能性があることを示唆している。

論文リンク:

https://www.nature.com/articles/s42256-020-0148-7

医療用ロボットは、リソースが限られた環境でも、危害を軽減し、効率と成果を向上させ、最小限の監督でタスクを実行できます。これにより、医療従事者は他の重要な側面にさらに集中できるようになり、救急医療従事者は遠隔地や資源の限られた地域で高度な介入と蘇生治療を提供できるようになります。

[[318811]]

「ボランティア、モデル、動物を使った当チームの実験では、この装置は専門の医療従事者によるものに比べて血管の位置を正確に特定し、治療の成功率を高め、処置時間を短縮できることがわかった」と、ニューブランズウィックにあるラトガース大学ラトガース工学部バイオメディカル工学科の学科長でポール&メアリー・モンロー特別教授の主任著者マーティン・L・ヤルムシュ氏は述べた。

静脈、動脈、その他の血管へのアクセスは、多くの診断および治療手順における重要な第一歩です。これには、採血、液体や薬剤の注入、ステントなどの装置の挿入、健康状態の監視などが含まれます。手術の適時性は重要ですが、血管を正確に見つけることは多くの医療スタッフにとって困難な場合があります。

研究によると、この手術の失敗率は約20パーセントで、血管が狭かったり、曲がりくねっていたり、滑ったり、潰れたりしている人の場合はさらに困難になるという。こうした症状は小児、高齢者、慢性疾患、外傷患者によく見られる。これらのグループでは、初回の精度が 50% 未満であり、少なくとも 5 回の試行が必要になることが多く、治療の遅れにつながりました。隣接する大動脈、神経、または内臓を穿刺すると出血などの合併症が発生する可能性があり、合併症のリスクが大幅に高まります。近くの血管へのアクセスが困難な場合は、中心静脈または動脈へのアクセスの作成など、より侵襲的なアプローチが必要になります。

この装置は、最小限の監視で針やカテーテルを細い血管に正確に誘導することができます。人工知能と近赤外線および超音波画像を組み合わせて、血管を周囲の組織から識別し、分類して深さを推定し、その後に動きを追跡するなど、複雑な視覚タスクを実行します。他の発表された論文では、著者らはこのデバイスが自動採血と血液の下流分析を統合するプラットフォームとして使用できることを実証しています。

次のステップは、正常な血管を持つ人々やアクセスが困難な領域を持つ人々を含む、より広範囲の集団を対象に、このデバイスのさらなる研究を実施することです。 「この装置は患者に使用できるだけでなく、少し改造すればげっ歯類から血液を採取することもできる。これは製薬業界やバイオテクノロジー業界における動物薬物試験にとって極めて重要だ」とヤルムシュ氏は語った。

関連レポート:

https://www.rutgers.edu/news/robot-uses-artificial-intelligence-and-imaging-draw-blood

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  AIoTは公共交通機関をよりスマートかつ安全にします

>>:  Paxos と Raft はコンセンサスアルゴリズム/プロトコルではないのですか?

ブログ    

推薦する

ドライバーの状態行動を識別できる監視システムは、実際には十分に正確で信頼できるものではない

ドライバーモニタリングシステム(DMS)は、近年、自動車市場で注目を集めています。 DMS の出現に...

CMU のポスドクらが NLP データ処理ツールを発表

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

機械学習の博士課程での私の経験から得た洞察

2020 年は非常に困難な年でしたが、私にとってはコーネル大学でコンピューターサイエンスの博士号を取...

AIキャンパス採用プログラマーの最高給与が明らかに!テンセントは年俸80万元でトップで、北京戸口を提供している。

[[213294]]写真はインターネットからアルゴリズム関連人材の市場では、需要と供給の不均衡が深...

AI技術が世界の感染症対策に情報提供を支援

最近、SingularityNETのCEOであるベン・ゲルツェル博士は、COVID-19サミットを開...

XiaomiのFALSRアルゴリズムが正式にオープンソース化され、画像超解像エンジニアリングアプリケーションに大きな進歩をもたらしました。

本日、Xiaomi は、弾性探索 (マクロ + ミクロ) に基づく超解像で驚くべき結果を達成した新し...

ペンシルバニア大学は、ディープニューラルネットワークの対称構造を研究し、層ごとの剥離解析モデルを提案した。

[[435206]]近年、ディープニューラルネットワークは多くの科学技術上の問題において優れたパフ...

このアルゴリズムに関する優れた本を読めば、AIを本当に理解できる

[[240202]]新しい技術を学ぶとき、多くの人は公式ドキュメントを読み、ビデオチュートリアルやデ...

...

...

指紋認証は本当に安全ですか?答えはそうではないかもしれない

科学技術の継続的な発展に伴い、ますます多くのブラックテクノロジーが私たちの生活に浸透し始めており、そ...

クォンタムAIパーク、リアルタイム翻訳、Googleが革新的なAI製品を展示

[[434605]] Googleは11日、「発明家」をテーマにしたイベントを開催し、AI技術をベー...

人工知能が金融を変える5つの方法

人工知能 (AI)、機械学習 (ML)、ディープニューラルネットワーク (DNN) は、金融業界のビ...