最適化されたアルゴリズムによる高度なデータ分析に視覚化を活用する 5 つのステップ

最適化されたアルゴリズムによる高度なデータ分析に視覚化を活用する 5 つのステップ

[[177815]]

著者: Carl Johan Ivarsson (Qlucore)

厳選記事 | ハン・シャオヤン

翻訳:ウー・レイ

校正 | レン・ジエ

【はじめに】ほとんどの科学研究において、大量の実験データの統計分析は、通常、コンピューティングと統計の技術専門家によって実行されます。 残念ながら、これらの専門家は対応する研究分野の専門家ではないため、分析に欠陥が生じる可能性があります。 研究者がツールや方法を簡単に使用してデータを処理し、分析できれば、豊かな研究成果が得られることは間違いありません。

質問

多くの科学者、特に実験で大量のデータを生成する分子生物学の分野の科学者は共通の課題に直面しています。膨大な量のデータを扱う場合、データを効果的に解釈するためのソフトウェア ツールが必要です。

今日、ビッグデータの量は増え続けていますが、コンピュータ ソフトウェアは依然として主にデータ処理に重点を置いており、技術専門家向けのユーザー インターフェイスを通じて標準的な統計手法を使用してデータ結果を提示しています。 そのため、科学者や研究者がこれらのデータを深く解釈することは難しく、大量のデータ分析作業は専門のバイオインフォマティクス専門家や生物統計学者によってのみ実行可能です。 しかし、研究分野について最もよく知っているのは通常科学者であるため、このモデルは理想的ではありません。

解決

最適化されたアルゴリズムと組み合わせることで、視覚化手法はこれらの課題をある程度解決し、より多くのユーザーがデータを探索および分析できるようになります。視覚化テクノロジーは、重要な構造やパターンを迅速に識別するための積極的かつ効果的な方法を提供し、フィードバック情報も理解しやすいものになります。 コミュニティの観点から見ると、これはより多くの科学者が実験データと結果を分析し議論することを可能にし、それによってイノベーションを促進するため、重要なアプローチでもあります。

視覚化を使用してデータ内の新しいサブグループとパターンを識別する場合は、再現可能で有意な結果を確保するために 5 段階のアプローチをお勧めします。 この分析ステップの目的は多岐にわたります。最も基本的な意図は、データ内のまったく新しいグループまたはパターンを特定することです。もう 1 つの側面は、データを調査して予想されるパターンのみを検出することです。これは品質管理に適した方法です。 この 5 段階のアプローチを適用することで、科学者は統計の専門家にならなくても、大規模で複雑なデータ セットを研究できます。 この方法については以下で詳しく説明しますが、ここではいくつかの基本的な概念を説明する必要があります。これは、RNA-seq、遺伝子発現アレイ、プロテオミクス、DNAメチル化、メタボロミクスなど、高次元データやサンプルデータなど、あらゆる種類のライフサイエンス業界のデータに適用できます。

ステップ1: データ次元を削減する

まず、高次元データを 3D でレンダリングできるように低次元に縮小する必要があります。 この目的のために、主成分分析 (PCA) の手法を使用することを提案します。さらに、情報を強化するためにデータの色付けツールを使用し、データセットの一部を選択するためにフィルターなどのツールを使用する必要があります。

[[177817]]

5 段階のアプローチは、アクティブなデータセットから悪意のある信号を検出して削除することから始まります。 信号が識別されると、それを削除して、より弱いけれども認識可能な他の信号があるかどうかを確認できます。強い信号を削除すると、通常、アクティブなサンプルや変数 (機能) が減少します。

ステップ2: 信号対雑音比を評価する

プロセスの 2 番目のステップは、PCA、投影スコア、ランダム化を使用して、データの信号対雑音比を評価することです。 投影スコアは、検出された信号またはテンプレートの視覚的な強度を示します。

[[177818]]

ステップ3: ノイズを除去するための分散フィルタリング

3 番目のステップは、分散フィルタリングによって「ノイズ」を除去することです。 研究者がアクティビティ データセットで重要な信号対雑音比を確認できる場合、ノイズの原因となる可能性が最も高いアクティブ変数の一部を削除するようにしてください。 必要な分散フィルタリングの量を識別するために、ユーザーは PCA からのスコアを視覚化して投影する方法を使用して、分散フィルタリングの量を取得できます。 いくつかの異なる分散設定をテストすることで、明確なパターンを見つけやすくなります。

ステップ4: 統計的検定

[[177819]]

ステップ 4 の統計テストは、5 ステップのプロセスの他のすべてのステージに適用できるオプションのステップです。つまり、初期分析中、ステップの繰り返し時、ステップの終了時に実行することも、まったく実行しないことも可能です。 テストするデータ セットは、事前に定義することも、反復プロセス中に決定することもできます。 (2番目のデータセットで検出されたデータ構造と配列を検証することをお勧めします)

ステップ5: サブグループまたはクラスターを検索する

次に、グラフを使用してサブグループまたはクラスターの検索を絞り込みます。 たとえば、ネットワークまたはグラフ内の接続サンプルを、より高次元 (つまり、3D PCA プロットで表すことができる 3 次元以上) に移動できます。サンプル プロットで作成されたグラフは、すべてのアクティブ変数の空間距離に基づいているため、ユーザーはデータ構造をより深く理解できます。

新しいデータ構造が見つからなくなるまで、これらの 5 つの手順を繰り返します。

このように操作すると、視覚化は研究者にとって強力なツールになります。データは明確な方法で視覚化できるため、科学者は専門のバイオインフォマティクス専門家や生物統計学者に頼ることなく、興味深い結果や重要な結果を簡単に特定できます。 代わりに、科学者はバイオインフォマティクスの専門家と協力して、より有意義な結果を得ることができます。

出典: http://www.qlucore.com

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

<<:  KDnuggets 調査 | データ サイエンティストが最もよく使用するアルゴリズム トップ 10

>>:  最もよく使われる機械学習アルゴリズムのトップ10を簡単に理解する

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

NIOにおける時系列予測アルゴリズムの応用の検討

1. 事業背景1. NIOの紹介2014 年 11 月に設立された NIO は、ハイエンドのスマート...

6軸産業用ロボットの制御方法と特性

[[187760]]産業用ロボットは、産業分野における多関節マニピュレータまたは多自由度機械装置です...

...

手動設計は不要、検索損失関数をゼロから作成

[[390709]]近年、自動機械学習(AutoML)は、モデル構造やトレーニング戦略など、多くのデ...

第2世代GANネットワークの台頭? DALL·E Miniのグラフィックが恐ろしく、外国人も大興奮!

現在、GoogleやOpenAIなどの大手企業が開発したテキストから画像へのモデルは、興味深いニュー...

AI時代に従業員がIT業務の価値を証明する方法

[[251301]]ロボットがあなたの仕事を奪う可能性はありますか? あなたはロボットの仕事を手伝う...

人工知能が高等教育を支援する:変化と持続

[[434825]]人工知能が教育に浸透する中で、我々は「静をもって動を制御する」という決意を持ち、...

高度な自動運転システムの開発において解決すべき課題についてお話しします

次世代のインテリジェントコネクテッドカーには、高度な自動運転システムが必須です。車両が自動運転をいか...

AI と機械学習はデータセンター運用にどのような変化をもたらすのでしょうか?

今日のデータセンターは、ほぼ克服不可能と思われる課題に直面しています。データ センターの運用はかつて...

...

自然言語処理 (NLP) とは何ですか?

[[399636]] 【51CTO.com クイック翻訳】自然言語処理 (NLP) の定義自然言語...

RLHF にはもう人間は必要ありません! Googleチームの研究により、AIによる注釈が人間のレベルに達したことが証明される

たとえば、RLHF の「人間」が入れ替わった場合、それは実現可能でしょうか? Google チームの...

Zhihu のホットトピック: 今後 3 ~ 5 年で、機械学習の人材が最も不足する分野はどれでしょうか?

[[328766]]今後 3 ~ 5 年で、機械学習のどの分野の人材が最も不足するでしょうか?今日...

空中で疫病と戦うドローン

新型コロナウイルス肺炎の流行が始まって以来、多くのハイテク技術がこの疫病との戦いに後方支援を提供して...