このオープンソースプロジェクトは、Pytorchを使用して17の強化学習アルゴリズムを実装しています。

このオープンソースプロジェクトは、Pytorchを使用して17の強化学習アルゴリズムを実装しています。

強化学習は過去 10 年間で大きな進歩を遂げ、現在ではさまざまな分野で最も人気のあるテクノロジーの 1 つとなっています。今日は、強化学習に関連するオープンソース プロジェクトをお勧めしたいと思います。

このオープンソース プロジェクトは、PyTorch を通じて 17 個の深層強化学習アルゴリズムを実装し、誰もが実践で深層強化学習アルゴリズムを理解できるようにするチュートリアルおよびコード ライブラリです。

完全な 17 個のアルゴリズムは次のように実装されます。

  • ディープQラーニング(DQN)(Mnih et al. 2013)
  • 固定Qターゲットを持つDQN(Mnih et al. 2013)
  • ダブル DQN (DDQN) (Hado van Hasselt 他 2015)
  • 優先順位付けされたエクスペリエンスリプレイを備えた DDQN (Schaul 他 2016)
  • 決闘DDQN(Wang et al. 2016)
  • 強化 (ウィリアムズ他 1992)
  • 深層決定論的政策勾配 (DDPG) (Lillicrap et al. 2016 )
  • ツイン遅延深層決定論的ポリシー勾配 (TD3) (藤本ら 2018)
  • ソフト アクター クリティック (SAC および SAC-Discrete) (Haarnoja 他 2018)
  • 非同期アドバンテージアクタークリティック (A3C) (Mnih et al. 2016)
  • 同期アドバンテージアクタークリティック(A2C)
  • 近接ポリシー最適化 (PPO) (Schulman et al. 2017)
  • 後知恵体験リプレイ付き DQN (DQN-HER) (Andrychowicz 他 2018)
  • 後知恵体験リプレイ付き DDPG (DDPG-HER) (Andrychowicz 他 2018)
  • 階層的DQN(h-DQN)(Kulkarni et al. 2016)
  • 階層的強化学習のための確率的 NN (SNN-HRL) (Florensa 他 2017)
  • 多様性こそがすべて (DIAYN) (Eyensbach 他 2018)

すべての実装は、Cart Pole (離散アクション)、Mountain Car Continuous (連続アクション)、Bit Flipping (動的ターゲットによる離散アクション)、または Fetch Reach (動的ターゲットによる連続アクション) を迅速に解決できます。作成者は、近いうちにさらに階層型 RL アルゴリズムを追加する予定です。

1. カートポールとマウンテンカー

以下では、離散アクション ゲーム Cart Pole または連続アクション ゲーム Mountain Car を正常に学習するさまざまな RL アルゴリズムを示します。 3 つのランダム シードを使用してアルゴリズムを実行した平均結果を以下に示します。

網掛け部分はプラスマイナス 1 標準偏差を表します。使用されるハイパーパラメータは、results/Cart_Pole.py および results/Mountain_Car.py ファイルにあります。

2. 後知恵体験リプレイ(HER)体験

下の図は、Experience Replay with Hindsight 2018 および Multi-Objective Reinforcement Learning 2018 の論文に記載されている、ビットフリッピング (14 ビット) およびフェッチリーチ環境での DQN および DDPG のパフォーマンスを示しています。これらの結果は論文で発見されたものを再現しており、Fetch HER によってエージェントが他の方法では解決できなかった問題を解決できることを示しています。各エージェントのペアでは同じハイパーパラメータが使用されるため、それらの唯一の違いは後知恵が使用されるかどうかであることに注意してください。

3. 階層的強化学習実験

上図の左側の結果は、Long Corridor 環境での DQN と Kulkarni らが 2016 年に提案した階層 DQN アルゴリズムのパフォーマンスを示しています。
上図の右側の結果は、2017 年に Florensa らが提案した DDQN アルゴリズムと階層的強化学習のための確率的ニューラル ネットワーク (SNN-HRL) のパフォーマンスを示しています。

現在、このプロジェクトは Github で 962 個のスターと 170 個のフォークを獲得しています (Github アドレス: https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch)

<<:  人工知能は静かに到来し、世界のテクノロジー大手はAIをめぐる戦いを始めている

>>:  適切な AI データ ストレージを選択するための 6 つの考慮事項

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

非常に便利な無料データマイニングツール 19 個のコレクション!

今日の世界では、データはお金を意味します。アプリベースの世界への移行に伴い、データは飛躍的に増加して...

データ汚染はAIシステムにとってますます大きな脅威となっている

ハッカーが制御を強めるために生成 AI モデルに偽の情報を挿入するなど、データ汚染の増加により AI...

インターネット大手が一斉に禁止、AIによる顔の改造はどこまで可能か?

​​昨年、微博で話題になった動画を覚えている人はどれくらいいるだろうか。『射雁英雄伝』で朱茵娜が演じ...

アジア太平洋地域の銀行:人工知能の活用にはまだまだ成長の余地がある

[51CTO.com クイック翻訳]パーソナライズされた付加価値サービスに対するユーザーの需要に対応...

人工知能の歴史 - チューリングテストからビッグデータまで

[[194770]]私はずっと、人工知能がどのように提案されたのか、その背後にはどのような物語がある...

AI給与動向:給与が急上昇中!

AI プログラマーの平均給与は約 10 万ドルから 15 万ドルですが、大金を稼ぐには AI エン...

...

...

...

...

ガートナーは、人間と機械の境界を曖昧にする5つの新たな技術トレンドを明らかにした。

世界有数の情報技術調査・コンサルティング会社であるガートナーが発表した「2018年新興技術ハイプサイ...

Facebookは視覚障害者向けに写真の説明を改善するためにAIを活用

[[377490]]海外メディアの報道によると、フェイスブックは1月21日、視覚障害のあるユーザー向...

十分なデータを使用してモデルをトレーニングしたかどうかをどのように確認しますか?

[51CTO.com クイック翻訳]ディープニューラルネットワーク (DNN) には大量のトレーニ...

...

...