ジェスチャーをすると、AIが絵文字を認識し、ブラウザ上で動作する:オープンソース

ジェスチャーをすると、AIが絵文字を認識し、ブラウザ上で動作する:オープンソース

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

優れたジェスチャー認識 AIになるには何が必要ですか?

姿勢を絶えず変えて、リアルタイムで絵文字を出力できるのはかなりクールです。

それはガード(間違い)で、「スタートレック」のバルカン人の敬礼です。これは一般的には使用されず、実行するのが困難な場合もあります。

それは幸運を意味し、人々は通常両手で比較します。しかし、それは人間にとって普遍的なジェスチャーではありません。

それでも、AIはそれを巧みに識別しました。さらに、ブラウザ上でもほとんど遅延なく動作します

AI の父親は Nick Bourdakos (略して「ニック」) という名の IBM のプログラマーです。

△ 666

Nick は、リアルタイム認識を簡単にするTensorFlow.jsを使用しています。

彼はそのアルゴリズムをオープンソースにして、誰でも試せるようにした。

たった30分

Nick 氏によると、このモデルは非常にシンプルで、 SSD-MobileNetだそうです。

MobileNet は分類用、SSD はターゲット検出用であり、これらを併用することも一般的な方法です。

彼は IBM クラウドの GPU、無料の k80を使用してトレーニングを行い、トレーニングの完了にはわずか 30 分しかかかりませんでした。

トレーニングを開始する前に、まずデータを準備する必要があります。AI はラベル付けされたジェスチャ マップをフィードします。

準備ができたので、モデルをインストールしましょう。

  1. 1 $ npm install -g クラウドアノテーション

その後、トレーニングを開始できます。

  1.   1 $カクリ
  2. 2 ┌──────────────────────────────┐
  3. 3 │ (C)loud (A)nnotations (CLI) │
  4. 4 │ バージョン1.0 . 12
  5. 5 └──────────────────────────────┘
  6. 6  
  7. 7使用法: cacli <コマンド>
  8. 8  
  9. 9ここで、<command> は次のいずれかです。
  10. 10 init 対話的にconfig.yamlファイルを作成する
  11. 11トレーニング トレーニングランを開始する
  12. 12ログ トレーニング実行のログを監視する
  13. 13進捗状況 トレーニングランの進捗状況を監視する
  14. 14リスト すべてのトレーニング実行をリストする
  15. 15ダウンロード トレーニング済みモデルをダウンロード
  16. 16  
  17. 17cacli <cmd> -h <cmd> のクイックヘルプ

もちろん、IBM Cloud や GPU を使用する必要はありません。 CPUを使用して AI を調整することもできますが、おそらく数時間かかります。

トレーニングが完了したら、ブラウザで実行します。 GitHub プロジェクトには、TensorFlow.js モデルに変換するためのスクリプトが付属しています。

React アプリにモデルを追加します。

nmp startと入力し、ブラウザでhttp://localhost:3000を開きます。

やった、これで画面に向かって指を振ると AI が理解するようになりました:

もちろん、この賢い AI は指を認識する以上のことができます。

飲む

それはすべて、AI に入力するためにどのようなデータを使用するかによって決まります。

かつてニックは、AI がソーダを区別する能力を訓練するのを手伝いました。

質問 1 : スプライトのボトルとカナダドライのボトルはどちらも緑色です。

位置が変わっても、ボトルが横向きになっても、AIは混乱しません。見てみましょう:

質問 2 : 難易度を上げてください。どちらのボトルもマウンテンデューで、1 本は通常タイプ、もう 1 本は低糖タイプです。

AIはそれでもためらうことなく違いをはっきりと見分けることができます。

彼はジェスチャーとソーダの区別が得意です。

そこで質問ですが、 AI に何を認識させたいのでしょうか?

考えがまとまったら、調整を始めましょう。コードは次のとおりです。

https://github.com/cloud-annotations/training/

PS 何人かの友人はすでにこれをうまくテストし、簡単だと言っています。

△認識結果が絵文字で表示されるともっと良い

<<:  マイクロソフトリサーチアジアと教育省が協力し、AI産業と教育の統合に向けた双方にメリットのあるエコシステムの構築に取り組んでいます。

>>:  非常に便利な無料データマイニングツール 19 個のコレクション!

ブログ    
ブログ    

推薦する

...

北京の平昌冬季オリンピック閉会式にAIとモバイクの自転車シェアリングが8分間強制的に介入

「人工知能、ユニークだと思います」。2月24日、北京8分監督のチャン・イーモウ氏が公演のハイライトを...

政府データ保護におけるAIの役割

1. 背景米国政府機関は機密データを保護し、潜在的な脅威に対応する任務を負っています。現在、リモート...

絶対に対立なんかじゃない!短期的にはAIが人間に取って代わることができない5つの分野

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

GPT-LLMトレーナー: タスク固有のLLMトレーニングを1文で実装

人工知能の急速な発展を背景に、特定のタスクを実行するためのモデルのトレーニングは常に困難な作業となっ...

人工知能が他に何ができるか知りたいですか?明確な「ベイジアン意識」を持たなければならない

私たちとの会話の中で、多くの読者が、人工知能が予想外の多くのことを実行できることに驚いたと述べていま...

...

GPT-3 がプログラミングを支配: AI はコーディングの仕事を殺すのか?

[[338796]] 2017年に研究者たちは「2040年までにAIがほとんどのコードを書くように...

「黄金の3月と銀の4月」が到来し、AIはすでに人材採用の分野に浸透しています。あなたにはどのような影響があるでしょうか?

2017年と比べると、最近の人工知能分野のニュースは人々を怒らせることはほとんどないようだ。おそら...

最強のやつでもGPT-4Vに合格できないの?大学入試をベースとしたテストベンチマーク「MMMU」が誕生

GPT-4V と大学生のどちらが良いでしょうか?まだ分​​かりませんが、新しいベンチマーク データセ...

LlamaIndex と ChatGPT を使用したコードレス検索拡張生成 (RAG)

翻訳者 | 李睿レビュー | Chonglou検索拡張生成 (RAG) は、大規模言語モデル (LL...

...

Meta と Microsoft が、開発者が生成型 AI アプリケーションを構築できるようにオープンソース モデル Llama 2 をリリース

7月19日、MetaとMicrosoftは協力して、研究や商用目的で無料で使用できるMetaの次世代...

ロボティック・プロセス・オートメーションは小売業界の運営と成長にどのように役立ちますか?

利益率が圧迫されている中、ロボティック・プロセス・オートメーション (RPA) を導入することでコス...

...