ビッグデータと人工知能の違いすら分からないのに、あなたはまだトップへの道を歩んでいる

ビッグデータと人工知能の違いすら分からないのに、あなたはまだトップへの道を歩んでいる

ビッグデータと AI は公平に比較​​できるでしょうか? ある程度は公平ですが、まずはその違いを明確にしましょう。

人工知能とビッグデータは人々がよく知っている流行語ですが、混乱が生じることもあります。 AI とビッグデータの類似点と相違点は何でしょうか? 共通点はありますか? 似ているでしょうか? 有効な比較を行うことはできますか?

これら 2 つのテクノロジーに共通する点は、関心です。 NewVantage Partners がビッグデータと人工知能に関する企業幹部を対象に実施した調査によると、幹部の 97.2% が自社がビッグデータと人工知能の取り組みに投資、構築、または立ち上げていると回答しました。

さらに、経営幹部の 76.5% は、AI とビッグデータは密接に関連しており、データの可用性が高まることで組織内の AI と認知機能が強化されると考えています。

AIとビッグデータを一緒にまとめるのは当然の誤りだと主張する人もいる。その理由の1つは、両者が実際には同一だからだ。しかし、これらは同じタスクを実行するための異なるツールです。しかし、まず最初にすべきことは、この 2 つの定義を明確にすることです。多くの人はこれを知りません。

「多くの人がビッグデータやビッグデータ分析をあまり理解していないか、AIをいくつかの有名な例の観点からしか理解していないことがわかった」とコンサルティング大手プライスウォーターハウスクーパースの上級研究員アラン・モリソン氏は語った。

人工知能とビッグデータの違い

同氏は、AIとビッグデータの主な違いは、ビッグデータは生の入力データであり、データが有用となる前に整理、構造化、統合される必要があるのに対し、AIは出力、つまりデータを処理することで生成されるインテリジェンスであるという点だと述べた。これにより、2つは根本的に異なります。

人工知能は、人間と同じように、入力に対して行動したり反応したりするなどの認知機能を機械が実行できるようにするコンピューティング形式です。従来のコンピューティング アプリケーションもデータに反応しますが、反応と応答の両方を手動でコーディングする必要があります。予期しない結果などの何らかのエラーが発生した場合、アプリケーションは反応できません。そして、AI システムは調査結果の変化に適応し、応答を修正するために継続的に動作を変更します。

AI 対応マシンは、データを分析および解釈し、その解釈に基づいて問題を解決するように設計されています。機械学習では、コンピューターは特定の結果に対してどのように行動または反応するかを一度学習し、将来同じ行動を取ることを認識します。

ビッグデータは、従来のコンピューティングの一種です。結果に基づいて行動するのではなく、結果を探すだけです。非常に大規模なデータセットを定義しますが、非常に多様なデータも定義します。大規模なデータ セットには、リレーショナル データベース内のトランザクション データなどの構造化データと、画像、電子メール データ、センサー データなどの構造化データまたは非構造化データが含まれる場合があります。

使用方法も異なります。ビッグデータは主に洞察を得るために使用され、例えばNetflixは人々がどんな映画やテレビ番組を視聴しているかを理解し、視聴者に推奨することができます。顧客の習慣や好むコンテンツを考慮するため、顧客が同じように感じる可能性が高いと推測します。

AI は意思決定と、より良い意思決定を行うための学習に関するものです。自己調整ソフトウェア、自動運転車、医療サンプルの検査など、AI は人間よりも早く、より少ないエラーで同じタスクを完了します。

人工知能とビッグデータの連携

AI とビッグデータは非常に異なりますが、それでも非常にうまく連携します。これは、AI、特に機械学習では知能を構築するためにデータが必要であるためです。たとえば、機械学習による画像認識アプリケーションは、何万枚もの飛行機の画像を調べて、その構成を学習し、将来的に飛行機を認識できるようになります。

もちろん、これはデータ準備における重要なステップです。モリソン氏は、「人々が最初に扱うデータはビッグデータですが、モデルをトレーニングするには、機械がデータ内の有用なパターンを確実に識別できるように、データを十分に構造化し、統合する必要があります」と指摘しました。

ビッグデータは大量のデータを提供するため、そのデータを使って何かを行う前に、まず大規模で複雑なデータセンターから有用なデータを分離する必要があります。 AI や機械学習で使用されるデータは「クリーニング」され、無関係なデータ、重複したデータ、不要なデータは削除されています。これが最初のステップです。

この後、AIは繁栄することができます。ビッグデータは、学習アルゴリズムのトレーニングに必要なデータを提供できます。データ学習には 2 つのタイプがあります。初期トレーニングでは、定期的にデータを収集できます。 AI アプリケーションは、初期トレーニングを完了した後も学習を停止しません。彼らは新しいデータを継続的に取り入れ、データの変化に応じて行動を調整していきます。したがって、データは初期的かつ進行中のものです。

どちらのタイプのコンピューティングもパターン認識を使用しますが、方法は異なります。ビッグデータ分析では、コールドデータ、つまり収集されていないデータから、順次分析を通じてパターンを見つけることもあります。ビッグデータ分析の基本フレームワークである Hadoop は、もともとサーバーの使用率が低い夜間に実行されるバッチ処理用に設計されました。

機械学習は収集したデータから学習し、収集し続けます。たとえば、自動運転車はデータの収集を止めず、常に学習してプロセスを磨き続けています。データは常に新しく入ってきて、常にそれに基づいて処理されます。

人工知能におけるビッグデータの役割

人工知能は常に人々の注目を集めてきました。 1999年の映画「マトリックス」のストーリーを覚えている人は多いだろう。この映画では、人間が知能を持った機械と必死に戦うというストーリーだ。しかし、現実世界の実装という点では、AI は最近まで周辺的な技術でした。

AI における最大の飛躍は、超並列プロセッサ、具体的には GPU の登場でした。GPU は、CPU の数十個のコアの代わりに数千個のコアを備えた超並列処理ユニットです。これにより、既存の AI アルゴリズムが大幅に加速され、実行可能になりました。

ビッグデータではこれらのプロセッサを使用でき、機械学習アルゴリズムは、マシンを高速化するためのデータ収集など、特定の動作を再現する方法を学習できます。 AI は人間と同じように結論を導きません。試行錯誤を通じて学習するため、AI に教えたりトレーニングしたりするには膨大な量のデータが必要になります。

AI アプリケーションに入力されるデータが増えるほど、その結果の精度が高まります。過去には、プロセッサが遅く、データ量が少ないために AI はうまく機能しませんでした。当時は今のような高度なセンサーはなく、インターネットも普及していなかったため、リアルタイムのデータを提供することは困難でした。

今日、人々は高速プロセッサ、入力デバイス、ネットワーク、大規模なデータセットなど、必要なものをすべて持っています。ビッグデータがなければ人工知能は存在しなかったであろうことは疑いの余地がありません。

<<:  自動運転シミュレーションテスト技術は実際の街頭シーンをシミュレートできる

>>:  現在、世界中で解決を待っている上位 10 の課題は何ですか?

ブログ    
ブログ    

推薦する

...

量子コンピューティングと人工知能の関係は何ですか?

量子コンピューティングは、学術誌だけでなく、一般の新聞や雑誌でも頻繁に議論される、非常に人気の高いト...

モデルはわずか7M:軽量で高精度な顔認識方式DBFace

わずか 7M サイズのこの顔認識モデルは、世界最大の自撮り写真に写っているほぼすべての人物を認識しま...

データの品質は機械学習を成功させる鍵です

翻訳者 | 張毅校正 | 梁哲、孫淑娟出典: frimufilms が作成したビジネス写真 - ww...

...

可観測性はAIの成功の重要な要素の一つである

ますます多くの企業が自社のインフラストラクチャやビジネス プロセスに人工知能を統合するにつれて、シス...

[文字列処理アルゴリズム] 最長連続文字とその出現回数のアルゴリズム設計とCコード実装

1. 要件の説明文字列を入力し、文字列内で連続する最長の文字と、その文字が連続して出現する回数を検索...

自動運転車は見たことのない物体を避けることができないのか?問題はトレーニングパイプラインにある

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

Meta が 128 言語をサポートする新しい音声モデルをリリース: Metaverse での言語間コミュニケーションを示唆

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能システムにおける不確実性の定量化

翻訳者 | 朱 仙中校正 | 梁哲、孫淑娟まとめ人工知能 (AI) ベースのシステムは大きな可能性を...

画像を外国語として扱うKuaishouと北京大学のマルチモーダル大規模モデルはDALLE-3に匹敵する

GPT や LLaMA などの現在の大規模言語モデルは、自然言語処理の分野で大きな進歩を遂げており、...

問題点を突き止める - Weiang 入札および評価ビデオインテリジェントアーカイブシステム

財務省令第87号では、購入者または購入代理店は入札および入札評価プロセス全体を録画および記録しなけれ...

AIをうまく活用したいなら、この2つの問題を早急に解決しなければなりません!

[[441323]]早すぎるオールインデータ文化を一夜にして構築することはできないのと同様に、分析...

...