戦争の太鼓はすでに鳴り響いています。人工知能に関して、あなたはどちらの陣営に属しますか?

戦争の太鼓はすでに鳴り響いています。人工知能に関して、あなたはどちらの陣営に属しますか?

[[240281]]

人工知能が将来の技術の方向性であることは誰もが知っていますが、AIの学習に対する姿勢は人それぞれです。最近、ある写真がTwitterで話題となり、ヤン・ルカン氏やMITのCSAILなど多くの著名人がリポストした。この図は、ディープラーニングの学習者を 4 つのタイプに分類し、4 つのタイプの学習者の特徴を説明しています。読者は自分がCann YeLunなのか、LeiLei Fiなのかを確認できます。

No.1 リラジ・サヴァル

Neta 出身の有名な YouTube 機械学習ブロガー、Siraj Raval。あなたは彼のことをよく知らないかもしれません。彼は「AI を解決し、それを人類の利益のために使う」ことに尽力しています。彼はまた、「コンピューター サイエンスのビル ナイ」、「コードのカニエ」、「ニューラル ネットワークのビヨンセ」、「学習のボルト」、「機械学習のイエス」などとしても知られています...

特徴:

  • 「ハハハ、ディープラーニングには実は数学は必要ないんだよ」
  • Siraj Science (sirajology) のファン
  • わからない場合は、Github Deep Learning Modelに直接アクセスしてください。
  • 理論よりも応用が重要
  • 数十億ドル規模のスタートアップにつながる新しい大きなアイデアを持っている
  • Pythonが勝利

No.2 カン・イェルン

Yann LeCun 氏は、Neta のディープラーニングの先駆者であり、Facebook のトップ人工知能科学者であり、ニューヨーク大学教授です。 LeCun 自身も、Twitter でこの写真をリツイートしました: 4 種類の (若い) ディープラーナー。皆さん、若すぎます...

  • 現在、学術分野で修士号/博士号取得を目指して勉強中
  • GANに関する別の論文が来週発表される予定
  • Google Brain、OpenAI、FAIR、DeepMind などの業界のラボで働くことに熱心です。
  • PyTorchは好きですが、TensorFlowを使わざるを得ません
  • CNNは革命的な創造物だと思う
  • データのクリーニングが嫌い
  • チームでGPUを所有する

No.3 ナンドリュー・アン

ディープラーニングの先駆者であり、スタンフォード大学の教授、そして百度の元トップ科学者であるアンドリュー・ン氏。 Andrew Ng 氏は人工知能教育に取り組んでいます。また、Deeplearning.ai、Landing.ai、AI Fund という 3 つの企業の創設者でもあります。

  • ディープラーニングを新たな電力として提唱
  • Nvidia GTX 1080TIを披露しましょう
  • 自由時間に自動運転車を作りたい
  • Andrew Ngのコースをすべて受講しました
  • 莫大な収入を求めて学界を離れ産業界へ
  • GCP、IBM Watson、Azure、AWS、flyodhub、paperspace のアカウントを持っている

No.4 レイレイフィ

スタンフォード大学教授、ImageNet創始者、Google Cloud機械学習および人工知能のトップ科学者であるNeta Liは、人工知能分野で最も優れた女性科学者です。

  • 私は R が好きですが、チームのほとんどは Python を使用しています。
  • コンピュータサイエンス/統計学/数学/AIの博士号
  • 論文ではバックプロパゲーションを手動で実行し、それをMatlabのコードに書き込むことができます。
  • ディープラーニングの数学を無視する人は本当のデータサイエンティストではないと思う
  • 年間99回の会議に出席する
  • この論文はNIPSに受理された。

もちろん、四天王は通常 5 人います (間違い)。熱心なネットユーザーらは、他にもいくつかのタイプが存在することを指摘した。その中には、メアリー・ガーカス(ニューヨーク大学教授、ネタ・ゲイリー・マーカス)もいます。このタイプの人々とは、バックプロパゲーションは衰退しており、ディープラーニングは行き詰まっていると考える博士課程の学生のグループを指します。

誰かが言っていたように、AI 人口を DND (ダンジョンズ & ドラゴンズ) 座標系に従って 9 つのカテゴリに分類すると、次のようになります。

少し考えてみたら、私は今でもまだリラージ・サヴァルの段階にいると思うようになりました。

しかし、少なくとも私たちは、ある元知事より一歩進んでいる。

[この記事は51CTOコラム「Machine Heart」、WeChatパブリックアカウント「Machine Heart(id: Almosthuman2014)」からのオリジナル記事です]

この著者の他の記事を読むにはここをクリックしてください

<<:  Python データ分析の基礎: 外れ値の検出と処理

>>:  ディープラーニングを活用してネットワークセキュリティを実現する方法

ブログ    

推薦する

...

...

...

最適化されたアルゴリズムによる高度なデータ分析に視覚化を活用する 5 つのステップ

[[176432]] 【導入】ほとんどの科学研究では、大量の実験データの統計分析は、通常、コンピュー...

機械学習アルゴリズムの新たな女王 — XGBoost

15年前の初出勤の日のことを今でも覚えています。大学院を終えて、世界的な投資銀行にアナリストとして...

もしエイリアンが本当に存在するなら、AIは最終的に彼らを見つけるだろう

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

GPTのようなモデルのトレーニング速度が26.5%向上、清華大学の朱俊らはINT4アルゴリズムを使用してニューラルネットワークのトレーニングを加速

アクティベーション、重み、勾配を 4 ビットに量子化することは、ニューラル ネットワークのトレーニン...

ICDM の選択: データ マイニングの代表的なアルゴリズム トップ 10

2006 年 12 月、国際的に有名な学術組織である IEEE 国際データマイニング会議 (ICD...

毎日 12 時に出勤し、ガールフレンドと過ごすために定時に退勤するプログラマーである私が、なぜいつも残業するのでしょうか。 !

社内で髪の多いプログラマートップ3の1人として、私はいつも髪に頼って残業しています。若い人たち、なぜ...

海外の研究者がAIを使って生体認証を欺く顔を生成

海外メディアによると、イスラエルのテルアビブ大学の研究者らは最近、画像生成システムStyleGANを...

2019年の技術予測: クラウド、ビッグデータ、AI、IoT、ブロックチェーン

[[258103]]テンセントテクノロジーニュース:フォーブスの寄稿者であるスティーブ・ウィルクス氏...

AWS は、機械学習の経験がなくても、企業の日常業務を改革し改善する 5 つの新しい機械学習サービスを開始しました。

Amazon Kendra は、自然言語処理やその他の機械学習技術を使用してエンタープライズ検索を...

...

効率的なコーディングのための 5 つの IntelliJ IDEA プラグイン

人工知能(AI)は現在、将来のトレンドと発展の方向性として広く認識されています。 AI がすべての仕...