TensorFlow の動的グラフツール Eager の使い方は?これは非常に簡単なチュートリアルです

TensorFlow の動的グラフツール Eager の使い方は?これは非常に簡単なチュートリアルです

昨年 11 月、Google Brain チームは、実行によって定義される新しいインターフェースである Eager Execution をリリースしました。これにより、最も人気のあるディープラーニング フレームワークである TensorFlow に動的グラフ メカニズムが導入されました。 Eager の登場により開発がより直感的になり、TensorFlow を使い始める際の難しさが大幅に軽減されました。この記事では、TensorFlow Eager を使用してニューラル ネットワークを構築するための簡単なチュートリアルを提供します。

プロジェクトリンク: https://github.com/madalinabuzau/tensorflow-eager-tutorials

この記事は、TensorFlow Eager モードを使用してディープラーニングの実践的な経験を積みたい人を支援することを目的としています。 TensorFlow Eager を使用すると、Numpy を使用するのと同じくらい簡単にニューラル ネットワークを構築できます。その大きな利点は、自動微分化が提供されることです (バックプロパゲーションを手動で記述する必要はありません (*^▽^*)!)。また、GPU 上で実行できるため、ニューラル ネットワークのトレーニングが大幅に高速化されます。

Google Brain 開発チームはかつて、Eager Execution の主な利点は次のとおりだと述べました。

  • 即時実行時エラーを迅速にデバッグし、Pythonツールと統合します。
  • 使いやすいPython制御フローによる動的モデルのサポート
  • カスタムおよび高次グラデーションの強力なサポート
  • ほぼすべてのTensorFlow操作に適用可能

このチュートリアルは誰にでも分かりやすいものにしたいので、GPU 処理なしで問題を解決してみます。

このチュートリアルで使用される TensorFlow のバージョンは 1.7 です。

始める

1. シンプルなニューラル ネットワークを構築する - 次の図では、合成生成されたデータセットで TensorFlow Eager モードを使用して、単一の隠し層ニューラル ネットワークを構築およびトレーニングする方法を説明します。

2. イーガー モードでのメトリックの使用 - 次の図は、3 つの異なる機械学習の問題 (マルチ分類、不均衡なデータセット、回帰) に対してイーガー モードと互換性のあるメトリックを使用する方法を示しています。

シンプルだが実用的な知識

3. トレーニング済みモデルの保存と復元 – 次の図は、トレーニング済みモデルを保存し、後で復元して新しいデータに対する予測を行う方法を示しています。

4. テキスト データを TFRecords に転送する - 次の図は、可変シーケンス長のテキスト データを TFRecords に保存する方法を示しています。イテレータを使用してデータセットを読み取る場合、データをバッチですばやく入力できます。

5. 画像データを TFRecords に転送する – 次の図は、画像データとそのメタデータを TFRecords に転送する方法を示しています。

6. TFRecords データをバッチで読み取る方法 - 次の図は、TFRecords から可変長シーケンスデータまたは画像データをバッチで読み取る方法を示しています。

畳み込みニューラルネットワーク (CNN)

7. 感情認識用の CNN モデルを構築する – 次の図では、TensorFlow Eager API と FER2013 データセットを使用して CNN モデルをゼロから構築する方法を説明します。完了すると、Web カメラを使用して構築したニューラル ネットワークを試すことができます。これは実験に最適な方法です。

リカレントニューラルネットワーク (RNN)

08. シーケンス分類用の動的 RNN の構築 - 可変シーケンス入力データの使用方法を学習します。次の図は、TensorFlow Eager API と Stanford Large Movie Review Dataset を使用して動的 RNN を構築する方法を示しています。

09. 時系列回帰 RNN の構築 – 次の図は、時系列予測用の RNN モデルを構築する方法を示しています。

[この記事は51CTOコラム「Machine Heart」、WeChatパブリックアカウント「Machine Heart(id: Almosthuman2014)」からのオリジナル記事です]

この著者の他の記事を読むにはここをクリックしてください

<<:  畳み込みニューラルネットワークに関する15の質問:CNNと生物視覚システムの研究と探究

>>:  さまざまな分野とフレームワーク、これはディープラーニングモデルの超完全なGitHubコレクションです

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

人工知能に関する6つの大きな懸念

2017年、人工知能は最高熱に達し、最高情報責任者、コンサルタント、学者らは、この技術によってビジネ...

...

...

私の国は、5G、人工知能、自動運転で目覚ましい成果を上げ、革新的な国の仲間入りを果たしました。

世界の潮流は力強く前進しています。科学研究​​と探究のペースを止めれば、井戸の中で空を眺め、満足して...

...

ビッグニュース!人工知能における新たなブレークスルー! Google ストリートビューを使って住民の投票傾向を調べてみましょう。

研究者は、新たに開発された人工知能技術の助けを借りて、大量の画像を分析し、分類およびマイニング可能な...

宇宙探査における人工知能の驚くべき7つの応用

宇宙探査は人類の最も挑戦的で刺激的な取り組みの一つです。これには、科学的知識、技術革新、そして人間の...

2018年: 人工知能の世界における8つのトレンド

​​ [[206934]]​​人工知能(AI)が私たちの仕事や生活に徐々に浸透してきていることは否定...

百度、599ドルのスマートビデオスピーカーを発売

[元記事は51CTO.comより]「アリスマートスピーカーTmall Genie原価499元、クーポ...

2021 年に登場予定の 10 のビッグデータ テクノロジー

1. ハドゥープシンプルなプログラミング モデルを備えた Hadoop は、マシンのクラスター間で多...

...

...

ネイチャー誌の年間トップ10科学者・イベント:天問1号の主任設計者、張栄橋氏がリスト入り

Nature の年間トップ 10 科学者およびトップ 10 科学イベントが発表されました。今年の科学...

ロボットとAIがサプライチェーンを自動化する方法

自動化技術は現在あらゆる業界に浸透しつつあり、これはサプライチェーンにおいて特に顕著です。実際、自動...

2024年に注目すべき5つの持続可能な技術

今年が進むにつれて、持続可能な開発をめぐる話題はますます高まるばかりであり、気候変動が近づいていると...