TensorFlow の動的グラフツール Eager の使い方は?これは非常に簡単なチュートリアルです

TensorFlow の動的グラフツール Eager の使い方は?これは非常に簡単なチュートリアルです

昨年 11 月、Google Brain チームは、実行によって定義される新しいインターフェースである Eager Execution をリリースしました。これにより、最も人気のあるディープラーニング フレームワークである TensorFlow に動的グラフ メカニズムが導入されました。 Eager の登場により開発がより直感的になり、TensorFlow を使い始める際の難しさが大幅に軽減されました。この記事では、TensorFlow Eager を使用してニューラル ネットワークを構築するための簡単なチュートリアルを提供します。

プロジェクトリンク: https://github.com/madalinabuzau/tensorflow-eager-tutorials

この記事は、TensorFlow Eager モードを使用してディープラーニングの実践的な経験を積みたい人を支援することを目的としています。 TensorFlow Eager を使用すると、Numpy を使用するのと同じくらい簡単にニューラル ネットワークを構築できます。その大きな利点は、自動微分化が提供されることです (バックプロパゲーションを手動で記述する必要はありません (*^▽^*)!)。また、GPU 上で実行できるため、ニューラル ネットワークのトレーニングが大幅に高速化されます。

Google Brain 開発チームはかつて、Eager Execution の主な利点は次のとおりだと述べました。

  • 即時実行時エラーを迅速にデバッグし、Pythonツールと統合します。
  • 使いやすいPython制御フローによる動的モデルのサポート
  • カスタムおよび高次グラデーションの強力なサポート
  • ほぼすべてのTensorFlow操作に適用可能

このチュートリアルは誰にでも分かりやすいものにしたいので、GPU 処理なしで問題を解決してみます。

このチュートリアルで使用される TensorFlow のバージョンは 1.7 です。

始める

1. シンプルなニューラル ネットワークを構築する - 次の図では、合成生成されたデータセットで TensorFlow Eager モードを使用して、単一の隠し層ニューラル ネットワークを構築およびトレーニングする方法を説明します。

2. イーガー モードでのメトリックの使用 - 次の図は、3 つの異なる機械学習の問題 (マルチ分類、不均衡なデータセット、回帰) に対してイーガー モードと互換性のあるメトリックを使用する方法を示しています。

シンプルだが実用的な知識

3. トレーニング済みモデルの保存と復元 – 次の図は、トレーニング済みモデルを保存し、後で復元して新しいデータに対する予測を行う方法を示しています。

4. テキスト データを TFRecords に転送する - 次の図は、可変シーケンス長のテキスト データを TFRecords に保存する方法を示しています。イテレータを使用してデータセットを読み取る場合、データをバッチですばやく入力できます。

5. 画像データを TFRecords に転送する – 次の図は、画像データとそのメタデータを TFRecords に転送する方法を示しています。

6. TFRecords データをバッチで読み取る方法 - 次の図は、TFRecords から可変長シーケンスデータまたは画像データをバッチで読み取る方法を示しています。

畳み込みニューラルネットワーク (CNN)

7. 感情認識用の CNN モデルを構築する – 次の図では、TensorFlow Eager API と FER2013 データセットを使用して CNN モデルをゼロから構築する方法を説明します。完了すると、Web カメラを使用して構築したニューラル ネットワークを試すことができます。これは実験に最適な方法です。

リカレントニューラルネットワーク (RNN)

08. シーケンス分類用の動的 RNN の構築 - 可変シーケンス入力データの使用方法を学習します。次の図は、TensorFlow Eager API と Stanford Large Movie Review Dataset を使用して動的 RNN を構築する方法を示しています。

09. 時系列回帰 RNN の構築 – 次の図は、時系列予測用の RNN モデルを構築する方法を示しています。

[この記事は51CTOコラム「Machine Heart」、WeChatパブリックアカウント「Machine Heart(id: Almosthuman2014)」からのオリジナル記事です]

この著者の他の記事を読むにはここをクリックしてください

<<:  畳み込みニューラルネットワークに関する15の質問:CNNと生物視覚システムの研究と探究

>>:  さまざまな分野とフレームワーク、これはディープラーニングモデルの超完全なGitHubコレクションです

ブログ    

推薦する

自動運転:最も安全ではないが、より安全

「九章」量子コンピューティングのプロトタイプ、「天極」脳型チップ、国内最大直径のシールドマシン「景華...

AIの変革力:AI市場の探究

人工知能 (AI) は、急速に現代の最も変革的なテクノロジーの 1 つとなり、産業を再編し、生産性を...

...

...

...

形式言語を認識する能力が不十分で、不完全なトランスフォーマーは自己注意の理論的欠陥を克服する必要がある

トランスフォーマー モデルは多くのタスクで非常に効果的ですが、一見単純な形式言語ではうまく機能しませ...

PaxosアルゴリズムがRaftプロトコルとZabプロトコルの祖先である理由とその原理分析

Paxos アルゴリズムは分散分野で非常に重要な役割を果たします。ただし、Paxos アルゴリズムに...

ディープラーニングコンパイラについて知っておくべきこと

[[409589]]ディープラーニングはここ 10 年ほどで急速に発展し、業界では多くのディープラー...

人工知能がITを変える5つの方法

IT サービス デスクからデータ分析の最前線、新しいツール、戦略、関係まで、AI は IT 組織をど...

[ホワイトベアおもしろ事実4] パーフェクトワールド:ペットの犬にはロボットがいて、独身の犬にはバーチャルガールフレンドがいる

[[185884]]飼い犬用のロボットを設計した人や、独身者向けのバーチャルガールフレンドを作った人...

...

動的計算グラフとGPU対応操作

[[409431]]動的計算グラフディープラーニングに PyTorch を使用する主な理由の 1 つ...

9 つの SOTA GNN よりも強力です。 Google Brainが新しいグラフニューラルネットワークGKATを提案

[[413820]]グラフは、ソーシャル ネットワークからバイオインフォマティクス、ロボット工学の...

人工知能は創造的な仕事を促進できるでしょうか?

今日、ほぼすべての AI 作業は機械学習の成功に基づいています。機械学習には分析を検討するための十分...