ハルビン工科大学と快手が共同でCogGPTを提案:大規模モデルにも認知反復が必要

ハルビン工科大学と快手が共同でCogGPTを提案:大規模モデルにも認知反復が必要

認知科学の分野では、人間が継続的な学習を通じて認知を変化させるプロセスを認知ダイナミクスと呼びます。比喩的に言えば、認知反復は私たちの脳の「ソフトウェア更新」プロセスのようなものです。モバイル アプリケーションは、バグを修正し、新しい機能を追加するために絶えず更新されます。私たちの脳は、常に新しい知識と経験を学習することで、思考方法を改善し、最適化します。

風邪に最も効く薬を判断する方法から、何世代にもわたる数学者がフェルマーの最終定理を証明してきた方法まで、認知の反復は個人の精神的発達と人類文明の進歩の両方において不可欠な役割を果たしてきました。

現在、GPT-4 などの大規模言語モデル (LLM) は人工汎用知能 (AGI) の開発に希望をもたらしていますが、同時に認知固定化という重大な問題も明らかにしています。例えば、「宇宙の中心はどこにあるか」という古典的な質問に対して、異なる時代の人々は、その時代の情報に基づいて異なる答えを出しますが、大規模モデルの場合、そのパラメータはトレーニング後に固定されます。この時点で、大規模モデルは、アップグレードできず、新しい情報を学習できなくなった古いソフトウェアのようなものです。

大規模モデルに特定の認知的背景を設定することで、文脈内学習を通じて対応する回答をシミュレートできますが、この認知的反復は自己駆動型ではなく、未知の情報環境に適応することはできません。ここで疑問が浮かび上がります。大規模なモデルが、人間と同じように、絶えず変化する情報に基づいて自己駆動型の認知反復を実現できるようにするにはどうすればよいでしょうか。

幸いなことに、この質問にはすでに予備的な答えがあります。ハルビン工業大学と快手科技の研究チームが、LLMの認知ダイナミクスの概念を初めて提案しました。それだけでなく、この概念を体系的にモデル化するために、彼らは正式なタスク定義と関連ベンチマーク CogBench を提供し、大規模言語モデルの認知反復を明示的にモデル化する LLM 駆動型エージェントである CogGPT を提案しました。つまり、この研究を基にすれば、将来の大規模言語モデルは単なる情報処理ツールではなく、人間の思考方法をさらにシミュレートし、生​​涯学習を実現できるようになるということです。


  • 論文リンク: https://arxiv.org/abs/2401.08438
  • プロジェクトのホームページ: https://github.com/KwaiKEG/CogGPT

論文からわかるように、このタスクは心理学の分野における縦断的研究を模倣し、大規模なモデルに対して継続的な「心理テスト」を実施します。具体的には、このタスクでは、まず動的な情報フローを介して継続的に変化する情報環境を確立し、次に大規模モデルの初期の性格を設定し、同じ認知アンケートに定期的に記入するように依頼して、これらのモデルが継続的に情報を受け取るにつれて、モデルの認知がどのように変化するかを観察しました。

研究チームはこの課題を踏まえ、情報の流れの種類に応じて、長い記事に基づくCogBench_aと短い動画に基づくCogBench_vに分けられるベンチマークCogBenchも提案した。同時に、モデルと人間の評価の一貫性と評価理由の合理性を測定するために、信憑性と合理性という2つの重要な評価指標を確立し、大規模言語モデルの認知反復分析法を充実させた。

既存の大規模モデルではリアルタイムのパラメータ更新が実現できないため、研究チームは反復的な認知メカニズムを備えた LLM 駆動型エージェントである CogGPT を設計しました。このメカニズムには、情報を抽出、保存、取得するためのメモリ保持システムと、自己認識の反復を自動化するための共同改良フレームワークが含まれます。

例えば、次の例では、CogGPTは手工芸が好きな人物を演じています。彼女は最初、タトゥーについてあまり知らなかったため、「タトゥーは美の追求である」という見解に対して中立スコア3点を維持していました。「タトゥーは体に害を及ぼす」や「自家製香水タトゥーステッカーのチュートリアル」などの一連の短いビデオを見た後、彼女はタトゥーは体に有害であり、美しさの唯一の基準であってはならないと考えるようになりました。彼女はこの見解に対する見方を中立スコア3点から不同意2点に変化させました。同時に、彼女は自家製タトゥーステッカーにも興味を持つようになり、人間のような認知反復能力を発揮しました。

研究チームはまた、CogGPT と CogBench 上のいくつかの共通ベースラインに関する広範な実験を実施しました。実験結果によると、CogBench_a と CogBench_v の 2 つのベンチマークにおいて、CogGPT は信頼性と合理性という 2 つのコア評価指標において既存の方法を大幅に上回っており、CogGPT が特定のペルソナの認知反復プロセスを効果的に模倣できることがさらに証明されています。

インテリジェントシステムが人間のように学習し続けることができれば、私たちの生活に革命的な変化がもたらされるでしょう。その頃には、パーソナルアシスタントがより効率的なカスタマイズされたサービスを提供できるようになり、インターネットサーフィンはもはや人間だけの楽しみではなくなるかもしれません。この研究はまだ初期段階ですが、すでに可能性に満ちた未来が明らかになっています。

注目すべきは、チームが最近、7B/13B 大規模言語モデルのエージェント関連の機能を改善した KwaiAgents システムをオープンソース化したことです。リリース以来、Github (https://github.com/KwaiKEG/KwaiAgents) で 800 以上のスターを獲得しています。

<<:  世界中のコードの品質が急激に低下、その原因は AI です。 1億5300万行のコードの詳細な分析レポートが公開されました

>>:  Metaの公式Promptエンジニアリングガイド:Llama 2はより効率的

ブログ    
ブログ    

推薦する

中国チームが世界初のAI全自動設計CPU「Enlightenment 1」を発表:人間の介入なし、性能は486に匹敵

6月30日、「半導体産業展望」の報道によると、中国科学院計算技術研究所などの機関がAI技術を活用し、...

人工知能の時代において、中国語と英語のどちらがAIの母国語になるのでしょうか?

人工知能は現在非常に人気の高い技術であり、世界中の国々が研究に資金と人材を投入しています。人工知能を...

DeepTraffic: MIT シミュレーション ゲームがディープラーニングを使用して交通渋滞を緩和

[[196857]]渋滞に巻き込まれるのはイライラするだけでなく、費用もかかります。頭痛の原因になっ...

金メダルレベルの数学スキル:DeepMindの幾何学的推論モデルがNatureに掲載され、コードはオープンソースで、フィールズ賞受賞者が賞賛

今回、人工知能アルゴリズムが国際数学オリンピック(IMO)で大きな進歩を遂げました。本日発行された国...

ハッカーはAIの顔を変える技術を使って就職活動を行っている。人工知能のセキュリティ問題は無視できない

米国での流行後、多くの企業が「在宅勤務」(WFH)モデルを採用しました。 FBIの刑事告訴センターは...

マイクロソフト、データセンターに十分なAIチップが供給されない場合、サービスが中断すると警告

7月29日のニュース、海外メディアの報道によると、マイクロソフトは投資家に対し、グラフィックス・プロ...

米国のAI雇用市場の現在の規模を解読する

[[342720]] 人工知能の分野でのこの国の雇用機会はどのようなものでしょうか?私たちはすべてが...

ロボットが密かに子供を産んだ?科学者たちも私も衝撃を受けました。

[[438325]]最近このニュースを見たことがあるだろうか。 「ロボットが赤ちゃんを産みました。...

順序保存回帰: リソース利用を最大化するアルゴリズム

[[205069]] 1. 数学的な定義順序保存回帰は回帰アルゴリズムの一種です。基本的な考え方は、...

テスラがFSDベータ版のメジャーアップデートをリリース、完全自動運転に近づく

テスラは2020年10月からFSDベータ版を徐々に展開しており、選ばれた自動車所有者のグループでテス...

TensorRT はどのようにしてより高速なアーキテクチャを実現するのでしょうか?

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

自然言語処理のためのオープンソースツールトップ12

私たちの生活に浸透しているすべてのチャットボット、音声アシスタント、予測テキスト、その他の音声/テキ...

AI バイアス: なぜ起こるのか、そして企業はどのように修正できるのか

ビジネスや社会で AI の利用が広まるにつれ、企業は機械モデルに現れる人間の偏見に注意を払う必要があ...

ChatGPT の新たな脆弱性: 個人のプライバシーを暗唱してトレーニング データを漏洩する制御不能状態、OpenAI が修正、まだ機能している

ChatGPTの最新の脆弱性が明らかになり、たった1つの文でトレーニングデータがそのまま漏洩してしま...

...