IT Homeは1月15日、Google Researchが最近、独自のBIG-Benchベンチマークテストを使用して「BIG-Bench Mistake」データセットを確立し、関連データセットを使用して市場で人気のある言語モデルの「エラー確率」と「エラー修正能力」に関する一連の評価研究を実施したと報じた。 Googleの研究者らは、これまで大規模言語モデルの「エラー確率」や「自己修正能力」を評価できるデータセットがなかったため、評価テスト用に「BIG-Bench Mistake」という専用のベンチマークデータセットを作成したという。 研究者らはまず、PaLM言語モデルを使用して独自のBIG-Benchベンチマークタスクで5つのタスクを実行し、次に生成された「思考の連鎖」の軌跡を修正して「論理エラー」部分を追加し、それをモデルに戻して思考の連鎖の軌跡のどこにエラーがあったかを判断したと報告されています。 データセットの精度を向上させるために、Google の研究者は上記のプロセスを繰り返し実行し、最終的に「255 個の論理エラー」を含む「BIG-Bench Mistake」と呼ばれる専用のベンチマーク データセットを作成しました。 研究者らは、「BIG-Bench Mistake」データセットの論理エラーは比較的「単純かつ明確」であるため、言語モデルが単純な論理エラーから練習を開始し、エラーを識別する能力を徐々に向上させるのに役立つ優れたテスト標準として使用できると述べています。 研究者らはデータセットを使用して市場のモデルをテストし、言語モデルの大部分は推論中に発生する論理エラーを識別して自己修正できるものの、このプロセスは「理想的ではない」ため、モデル出力のコンテンツを修正するには通常、人間の介入が必要であることを発見しました。 ▲ 画像出典: Google Research プレスリリース IT Homeはレポートから、Googleが「現時点で最も先進的な大規模言語モデル」と主張するものの自己修正能力も比較的限られていることを発見した。関連するテスト結果で最も優れたパフォーマンスを示したモデルは、論理エラーの52.9%しか見つけられなかった。 Google の研究者らは、この BIG-Bench Mistake データセットはモデルの自己修正能力の向上にも役立つと主張している。関連するテスト タスクでモデルを微調整した後、「通常、小さなモデルでも、サンプル プロンプトがゼロの大きなモデルよりもパフォーマンスが向上します。」 これを踏まえて、Googleは、モデルのエラー修正という点では、独自の小さなモデルを使って大きなモデルを「監督」できると考えています。大きな言語モデルに「自身のエラーを修正」することを学習させるのに比べて、大きなモデルの監督専用の小さな専用モデルを展開することは、効率の向上、関連するAI展開コストの削減、微調整の容易化につながります。 |
<<: ソフトウェア開発者ガイド: 独自のデータで ChatGPT をトレーニングする
>>: インテリジェントな変革の時代を迎える: AIでビジネスの未来をリードする
国家標準化局中央サイバースペース委員会 国家発展改革委員会 科学技術省 工業情報化省 「 国家新世...
[[421713]]人工知能(AI)がその発明に対して特許を申請できるかどうかに関して、米国連邦政府...
近年、世界経済の発展に伴い、人間の生活環境は徐々に改善され、人口も増加傾向にありますが、急速な人口増...
[[248512]]当時、英語に支配されていた恐怖を覚えている人がどれだけいるでしょうか?前日に覚...
市場調査会社MarketsandMarketsによると、世界のエッジ人工知能(エッジAI)ソフトウェ...
OpenAI が最初に Sora を作成した理由は何ですか?現在、世界中の研究者、エンジニア、投資家...
2月29日、工業情報化省は2023年第4四半期の電気通信サービスの品質に関する通知を発行した。通知で...
最近、有名なChatGPT「おばあちゃんの脆弱性」が再び人気になっています!この伝説の「Granny...
最近、オーストラレーシア工科大学、マッセー大学、ロイヤルメルボルン工科大学などの研究機関の研究者が、...
2020年、疫病による経済的、社会的不確実性にもかかわらず、人工知能技術は加速的に発展し続けました...
人工知能(AI)技術の急速な発展は、さまざまな分野に多くの革新と利便性をもたらしました。この記事では...
論文アドレス: https://arxiv.org/abs/2312.16171 Githubアドレ...