Google は、AI 言語モデルの自己修正機能の向上を支援する BIG-Bench Mistake データセットをリリースしました。

Google は、AI 言語モデルの自己修正機能の向上を支援する BIG-Bench Mistake データセットをリリースしました。

IT Homeは1月15日、Google Researchが最近、独自のBIG-Benchベンチマークテストを使用して「BIG-Bench Mistake」データセットを確立し、関連データセットを使用して市場で人気のある言語モデルの「エラー確率」と「エラー修正能力」に関する一連の評価研究を実施したと報じた。

Googleの研究者らは、これまで大規模言語モデルの「エラー確率」や「自己修正能力」を評価できるデータセットがなかったため、評価テスト用に「BIG-Bench Mistake」という専用のベンチマークデータセットを作成したという。

研究者らはまず、PaLM言語モデルを使用して独自のBIG-Benchベンチマークタスクで5つのタスクを実行し、次に生成された「思考の連鎖」の軌跡を修正して「論理エラー」部分を追加し、それをモデルに戻して思考の連鎖の軌跡のどこにエラーがあったかを判断したと報告されています。

データセットの精度を向上させるために、Google の研究者は上記のプロセスを繰り返し実行し、最終的に「255 個の論理エラー」を含む「BIG-Bench Mistake」と呼ばれる専用のベンチマーク データセットを作成しました。

研究者らは、「BIG-Bench Mistake」データセットの論理エラーは比較的「単純かつ明確」であるため、言語モデルが単純な論理エラーから練習を開始し、エラーを識別する能力を徐々に向上させるのに役立つ優れたテスト標準として使用できると述べています。

研究者らはデータセットを使用して市場のモデルをテストし、言語モデルの大部分は推論中に発生する論理エラーを識別して自己修正できるものの、このプロセスは「理想的ではない」ため、モデル出力のコンテンツを修正するには通常、人間の介入が必要であることを発見しました。

▲ 画像出典: Google Research プレスリリース

IT Homeはレポートから、Googleが「現時点で最も先進的な大規模言語モデル」と主張するものの自己修正能力も比較的限られていることを発見した。関連するテスト結果で最も優れたパフォーマンスを示したモデルは、論理エラーの52.9%しか見つけられなかった

Google の研究者らは、この BIG-Bench Mistake データセットはモデルの自己修正能力の向上にも役立つと主張している。関連するテスト タスクでモデルを微調整した後、「通常、小さなモデルでも、サンプル プロンプトがゼロの大きなモデルよりもパフォーマンスが向上します。」

これを踏まえて、Googleは、モデルのエラー修正という点では、独自の小さなモデルを使って大きなモデルを「監督」できると考えています。大きな言語モデルに「自身のエラーを修正」することを学習させるのに比べて、大きなモデルの監督専用の小さな専用モデルを展開することは、効率の向上、関連するAI展開コストの削減、微調整の容易化につながります

<<:  ソフトウェア開発者ガイド: 独自のデータで ChatGPT をトレーニングする

>>:  インテリジェントな変革の時代を迎える: AIでビジネスの未来をリードする

ブログ    

推薦する

データ分布の正規性を判断するための11の基本的方法

データ サイエンスと機械学習の分野では、多くのモデルはデータが正規分布していると想定しているか、デー...

...

まだ分​​からない?約20以上の自動運転データセット、ランキング、ベンチマークのコレクション

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

ChatGPT Plusの登録が停止、OpenAIは容量の課題に直面

11月16日、海外メディアの報道によると、OpenAIのCEOであるサム・アルトマン氏は最近、Dev...

...

...

今後の企業イノベーションを牽引する10の優れたテクノロジー

エンタープライズ テクノロジーの将来は、業界を変えるほどの大きな革新をもたらすでしょう。 5G から...

WPS AIは正式に公開され、WPSスマートドキュメントに初めて適用されました。

9月5日、Kingsoft OfficeはWPS AIを正式に公開したと発表しました。AI機能はま...

...

Amazon が「AI チケット」を購入するために 40 億ドルを費やす!ユニコーン企業に投資し、ライバル企業から幹部を引き抜く

米国現地時間9月25日、AmazonとAnthropicは共同で次のように発表した。アマゾンはアント...

利益予測はもはや難しくありません。Scikit-learn 線形回帰法を使用すると、半分の労力で 2 倍の結果を得ることができます。

1. はじめに生成 AI は間違いなくゲームを変えるテクノロジーですが、ほとんどのビジネス上の問題...

MetaMath: 逆思考で大規模モデルをトレーニングする新しい数学的推論言語モデル

複雑な数学的推論は、大規模言語モデルの推論能力を評価するための重要な指標です。現在、一般的に使用され...

天文学者は人工知能を使って宇宙の実際の形を明らかにする

日本の天文学者たちは、銀河の形状のランダムな変化によって生じる天文データの「ノイズ」を除去する新しい...