人工知能を学ぶには、このコア技術を知っておく必要があります!

人工知能を学ぶには、このコア技術を知っておく必要があります!

自然言語処理 (NLP) は、コンピューター サイエンスと人工知能の分野における重要な方向性です。自然言語を用いて人間とコンピュータ間の効果的なコミュニケーションを可能にするさまざまな理論と方法を研究します。主に機械翻訳、機械読解、質問応答システムなど、多くの分野が関係します。

音声認識からスマートホーム、人間と機械の戦いから自動運転車まで、人工知能の「進化」は私たちの社会生活の細部に何度も驚きをもたらしてきました。同時に、人工知能もさまざまなコア技術を習得します。

自然言語処理:コンピュータをツールとして利用し、文書や口頭の形式でさまざまな処理や加工を行う技術です。人と人、人とコンピュータ間のコミュニケーションにおける言語の問題を研究する学問であり、人工知能の主な内容です。

自然言語処理とは、言語能力や言語応用のモデルを研究し、そのような言語モデルを実装するためのコンピュータ(アルゴリズム)フレームワークを確立し、それを改善、評価し、最終的にはさまざまな実用的なシステムを設計するために使用することです。

[[359844]]
自然言語処理の応用

🔻
情報検索


情報検索は図書館資料の検索・取り出しから始まり、コンピュータ技術の導入により、単純なテキスト検索から画像、音声、動画などのマルチメディア情報検索へと拡大し、検索対象もデータベースからインターネットへと拡大しました。

一般的なモデル: ブールモデル、ベクトル空間モデル、確率モデル

よく使われる技術: 転置インデックス、潜在的意味解析 (LDA など)

機械翻訳

機械翻訳技術とは、コンピューター技術を使用してある自然言語を別の自然言語に翻訳するプロセスを指します。統計ベースの機械翻訳方式は、従来のルールベースや例文ベースの翻訳方式の限界を打ち破り、翻訳効率の大幅な向上を実現しました。

文書分類

文書分類: コンピュータ システムを使用して、特定の分類基準に従って大量の文書を自動的に分類することが目的です。

ドキュメント分類には、機械学習に基づく方法 (SVM、決定木など) とディープラーニングに基づく方法 (CNN、RNN など) の 2 つの方法があります。

プロセス: サンプル処理 - 特徴選択 - 分類。

アプリケーション: ライブラリ管理、コンテンツ管理、感情分析など。

質問応答システム


質問応答システムは、オープンドメイン対話システムとドメイン固有の質問応答システムに分けられます。質問応答システム技術とは、コンピューターが人間のように自然言語を使用して人とコミュニケーションできるようにする技術を指します。人々は自然言語で表現された質問を質問応答システムに送信することができ、システムは最も関連性の高い回答を返します。

音声認識

音声認識: コンピュータに入力された音声信号を書き言葉に変換します。

用途: テキスト入力、人間とコンピュータのコミュニケーション、音声翻訳など。

意味理解

意味理解技術とは、コンピューター技術を使用してテキスト文章を理解し、その文章に関連する質問に答えるプロセスを指します。意味理解は、コンテキストを理解し、回答の正確さを制御することに重点を置いています。セマンティック理解技術は現在、インテリジェントな顧客サービスや自動製品質問と回答などの関連分野で重要な役割を果たしています。

テキストマイニング

主にテキストのクラスタリング、分類、要約抽出、感情分析などが含まれます。同時に、マイニングされた情報と知識を視覚化して、インタラクティブな表現インターフェースを形成する必要があります。

情報抽出

情報抽出とは、自然言語テキストから特定のイベントや事実情報を抽出するプロセスであり、膨大な量のコンテンツを自動的に分類、抽出、再構築するのに役立ちます。

この情報には通常、エンティティ、イベント、および関係が含まれます。

例えば、ニュースから時間、場所、主要な数値を抽出したり、技術文書から製品名、開発期間、パフォーマンス指標などを抽出します。

自動要約と比較すると、情報抽出はより目的があり、見つかった情報を特定のフレームワークで提示できます。

情報抽出は、情報検索、質問応答システム、感情分析、テキストマイニングなどで広く使用されています。

ソーシャルメディア分析

Twitter や Facebook などのソーシャル メディア アプリケーションにはハッシュタグやトレンドがあり、自然言語処理を使用してこれらを追跡および監視し、世界中でどのようなトピックが話題になっているかを理解します。さらに、自然言語は、否定的、不快、不適切なコメントや投稿を除外することで、最適化プロセスに役立ちます。

感情分析

これは感情のための AI としても知られており、書かれた言葉や話された言葉から感情や情緒状態を識別、抽出、定量化するプロセスです。感情分析ツールは、顧客のレビューやソーシャル メディアの投稿などを処理し、新しいレストランの料理の品質など、特定の事柄に対する感情的な反応や意見を理解するために使用されます。

[[359845]]

実際、自然言語処理の範囲は上記の点に限定されません。自然言語処理の究極の目標は、自然言語を使用してコンピューターと通信することです。これにより、人々は、あまり自然で慣れていないさまざまなコンピューター言語を学習するために多くの時間と労力を費やすことなく、最も慣れている言語でコンピューターを使用できるようになります。自然言語処理って本当にすごいですね!

<<:  目に見えないAI技術は、知的な世界の秘密を理解するのに役立ちます

>>:  組織の AI 戦略が失敗する 7 つの理由

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

人工知能変革の転換点をどう乗り越えるか

Milvus は、オープンソースの人工知能エコシステムにデータ サービス機能を提供するオープンソース...

ベンチャー投資における機械学習の活用方法

過去 20 年間にわたり、Veronica Wu は多くの大きな技術的変化の始まりを目撃してきました...

アリババが自然言語理解の世界記録を更新、AIの常識的推論は人間のそれに近づいている

最近、アリババAIは常識QA分野の権威あるデータセットであるCommonsenseQAで新たな世界記...

製造の自動化と効率化の新時代

18 世紀と 19 世紀の最初の産業革命は社会を完全に作り変え、物の製造方法、人々の働き方、そして生...

今後数年間の人工知能研究が避けられない3つの重要な問題

現在、人工知能は産業のアップグレードを積極的に推進しており、製品の品質とコア能力を向上させています。...

...

AI への移行: 6 月の AI 資金調達活動の概要

情報化時代において、人工知能は急速に社会の変化と発展を推進しています。世界中の研究機関、企業、大学が...

2022 年の 5 つの主要な AI と機械学習のトレンド

[[414740]]人工知能と機械学習の分野では、企業が今から準備しておくべき大きなトレンドがいくつ...

...

PG&E、AIを活用して山火事のリスクを軽減

2018年、パシフィック・ガス・アンド・エレクトリック(PG&E)の送電線の故障により発生し...

中国は人工知能チップの開発において「偏り」を持つことはできない

[[269826]] 「設計アーキテクチャだけを見れば、国産の人工知能チップは外国製のものより劣って...

...

人工知能(AI)の人間的側面を探る

新興技術である AI はこれまで多くの課題に直面しており、今後も直面し続けるでしょう。一方で、消費者...

...