人工知能を学ぶには、このコア技術を知っておく必要があります!

人工知能を学ぶには、このコア技術を知っておく必要があります!

自然言語処理 (NLP) は、コンピューター サイエンスと人工知能の分野における重要な方向性です。自然言語を用いて人間とコンピュータ間の効果的なコミュニケーションを可能にするさまざまな理論と方法を研究します。主に機械翻訳、機械読解、質問応答システムなど、多くの分野が関係します。

音声認識からスマートホーム、人間と機械の戦いから自動運転車まで、人工知能の「進化」は私たちの社会生活の細部に何度も驚きをもたらしてきました。同時に、人工知能もさまざまなコア技術を習得します。

自然言語処理:コンピュータをツールとして利用し、文書や口頭の形式でさまざまな処理や加工を行う技術です。人と人、人とコンピュータ間のコミュニケーションにおける言語の問題を研究する学問であり、人工知能の主な内容です。

自然言語処理とは、言語能力や言語応用のモデルを研究し、そのような言語モデルを実装するためのコンピュータ(アルゴリズム)フレームワークを確立し、それを改善、評価し、最終的にはさまざまな実用的なシステムを設計するために使用することです。

[[359844]]
自然言語処理の応用

🔻
情報検索


情報検索は図書館資料の検索・取り出しから始まり、コンピュータ技術の導入により、単純なテキスト検索から画像、音声、動画などのマルチメディア情報検索へと拡大し、検索対象もデータベースからインターネットへと拡大しました。

一般的なモデル: ブールモデル、ベクトル空間モデル、確率モデル

よく使われる技術: 転置インデックス、潜在的意味解析 (LDA など)

機械翻訳

機械翻訳技術とは、コンピューター技術を使用してある自然言語を別の自然言語に翻訳するプロセスを指します。統計ベースの機械翻訳方式は、従来のルールベースや例文ベースの翻訳方式の限界を打ち破り、翻訳効率の大幅な向上を実現しました。

文書分類

文書分類: コンピュータ システムを使用して、特定の分類基準に従って大量の文書を自動的に分類することが目的です。

ドキュメント分類には、機械学習に基づく方法 (SVM、決定木など) とディープラーニングに基づく方法 (CNN、RNN など) の 2 つの方法があります。

プロセス: サンプル処理 - 特徴選択 - 分類。

アプリケーション: ライブラリ管理、コンテンツ管理、感情分析など。

質問応答システム


質問応答システムは、オープンドメイン対話システムとドメイン固有の質問応答システムに分けられます。質問応答システム技術とは、コンピューターが人間のように自然言語を使用して人とコミュニケーションできるようにする技術を指します。人々は自然言語で表現された質問を質問応答システムに送信することができ、システムは最も関連性の高い回答を返します。

音声認識

音声認識: コンピュータに入力された音声信号を書き言葉に変換します。

用途: テキスト入力、人間とコンピュータのコミュニケーション、音声翻訳など。

意味理解

意味理解技術とは、コンピューター技術を使用してテキスト文章を理解し、その文章に関連する質問に答えるプロセスを指します。意味理解は、コンテキストを理解し、回答の正確さを制御することに重点を置いています。セマンティック理解技術は現在、インテリジェントな顧客サービスや自動製品質問と回答などの関連分野で重要な役割を果たしています。

テキストマイニング

主にテキストのクラスタリング、分類、要約抽出、感情分析などが含まれます。同時に、マイニングされた情報と知識を視覚化して、インタラクティブな表現インターフェースを形成する必要があります。

情報抽出

情報抽出とは、自然言語テキストから特定のイベントや事実情報を抽出するプロセスであり、膨大な量のコンテンツを自動的に分類、抽出、再構築するのに役立ちます。

この情報には通常、エンティティ、イベント、および関係が含まれます。

例えば、ニュースから時間、場所、主要な数値を抽出したり、技術文書から製品名、開発期間、パフォーマンス指標などを抽出します。

自動要約と比較すると、情報抽出はより目的があり、見つかった情報を特定のフレームワークで提示できます。

情報抽出は、情報検索、質問応答システム、感情分析、テキストマイニングなどで広く使用されています。

ソーシャルメディア分析

Twitter や Facebook などのソーシャル メディア アプリケーションにはハッシュタグやトレンドがあり、自然言語処理を使用してこれらを追跡および監視し、世界中でどのようなトピックが話題になっているかを理解します。さらに、自然言語は、否定的、不快、不適切なコメントや投稿を除外することで、最適化プロセスに役立ちます。

感情分析

これは感情のための AI としても知られており、書かれた言葉や話された言葉から感情や情緒状態を識別、抽出、定量化するプロセスです。感情分析ツールは、顧客のレビューやソーシャル メディアの投稿などを処理し、新しいレストランの料理の品質など、特定の事柄に対する感情的な反応や意見を理解するために使用されます。

[[359845]]

実際、自然言語処理の範囲は上記の点に限定されません。自然言語処理の究極の目標は、自然言語を使用してコンピューターと通信することです。これにより、人々は、あまり自然で慣れていないさまざまなコンピューター言語を学習するために多くの時間と労力を費やすことなく、最も慣れている言語でコンピューターを使用できるようになります。自然言語処理って本当にすごいですね!

<<:  目に見えないAI技術は、知的な世界の秘密を理解するのに役立ちます

>>:  組織の AI 戦略が失敗する 7 つの理由

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

[NCTSサミットレビュー] アリババの潘家騰:アリママのオフラインテストドメインのインテリジェント構築

2019年10月26日、Testinが主催する第2回NCTS中国クラウドテスト業界サミットが北京で開...

Google Brainの主要研究:高速微分可能ソートアルゴリズム、桁違いに高速

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

マイクロソフト、Nvidia が 5300 億の NLP モデル「Megatron-Turing」をリリース、価格は A100 で 4480 台

[[428336]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

OpenAI のもう一つの「大ヒット作」: AI に芸術的創造性を与える

OpenAIがまた爆弾発言をしました。昨年夏に人気の言語モデルGPT-3を発表したOpenAIの研究...

はい、純粋なSQLクエリステートメントでニューラルネットワークを実装できます。

[[229220]]よく知られているように、SQL は、開発者が大量のデータに対して効率的な操作を...

GPT-4より18倍高速、世界最速の大型モデルGroqが登場!毎秒500トークンが記録を破る、自社開発LPUはNVIDIA GPUの10倍

気がつくと、1 秒あたり 500 トークンを出力できる Groq モデルがインターネット上に広まって...

...

Google の公式 Android Market ランキング アルゴリズムとルール

1. ランキングの計算式にはどのような指標が含まれていますか?指標 A、B、C とは何ですか? 重み...

ディープラーニングの限界と将来

[[227297]]注: この記事は、Keras の作者である François Chollet に...

優れたプレーンテキストモデル? GPT-4は準備完了

2020年5月、GPT-3はGPT-2のリリースから1年後に正式にリリースされました。GPT-2も...

小度が「画期的な」新製品を百度世界2020で初公開、CCTVと提携してスマートライフの全貌を披露

「小都小都」、「私はここにいます」 - 数百万の家族と小都の間の日常会話のシーンがCCTVニュースス...

...

まるで平らな地面を歩いているようです!ボストンダイナミクスアトラスはパルクールを学習しますが、舞台裏の映像は長編映画よりもさらにエキサイティングです

ステージ上の1分、ステージ外の10年間の努力。ボストン・ダイナミクスのロボット「アトラス」は新たなス...