Pytorchの核心部分である自動微分化を突破! !

Pytorchの核心部分である自動微分化を突破! !

こんにちは、Xiaozhuangです!

PyTorch での自動微分演算に関して、この論文では PyTorch での自動微分の概念を紹介します。

自動微分はディープラーニング フレームワークの重要な機能であり、機械学習モデルが勾配を自動的に計算し、パラメータの更新と最適化を実行できるようにします。

PyTorch は、動的な計算グラフと自動微分化メカニズムを通じて勾配計算をシンプルかつ柔軟にする、人気のディープラーニング フレームワークです。

自動微分

自動微分化とは、機械学習フレームワークが手動で微分コードを導出したり記述したりすることなく、関数の微分 (勾配) を自動的に計算できることを意味します。これはディープラーニング モデルのトレーニングにとって非常に重要です。モデルには通常、多数のパラメーターが含まれており、手動で勾配を計算すると複雑でエラーが発生しやすい作業になるためです。 PyTorch は自動微分関数を提供するため、ユーザーは簡単に勾配を計算し、バックプロパゲーションを実行してモデル パラメータを更新できます。

ちょっとした原則

PyTorch での自動微分化は、動的計算グラフに基づいています。計算グラフは関数の計算プロセスを表すグラフ構造であり、ノードは操作を表し、エッジはデータ フローを表します。動的計算グラフの特徴は、計算グラフの構造を事前に定義するのではなく、実際の実行プロセスに応じて動的に生成できることです。

PyTorch では、ユーザーが実行するすべての操作が記録され、計算グラフが構築されます。勾配を計算する必要がある場合、PyTorch はこの計算グラフに基づいてバックプロパゲーションを実行し、損失関数の各パラメータの勾配を自動的に計算できます。動的な計算グラフに基づくこの自動導出メカニズムにより、PyTorch は柔軟でスケーラブルになり、さまざまな複雑なニューラル ネットワーク構造に適しています。

自動微分の基本操作

1. テンソル

PyTorch では、テンソルは自動微分化のための基本的なデータ構造です。テンソルは、NumPy の配列に似た多次元配列ですが、自動微分などの追加機能があります。ユーザーは torch.Tensor クラスを通じてテンソルを作成し、それに対してさまざまな操作を実行できます。

 import torch # 创建张量x = torch.tensor([2.0], requires_grad=True)

上記の例では、requires_grad=True は、このテンソルを自動的に導出することを示します。

2. 計算グラフの構築

実行される各操作は、計算グラフにノードを作成します。 PyTorch は、加算、乗算、活性化関数など、計算グラフに痕跡を残すさまざまなテンソル演算を提供します。

 # 张量操作y = x ** 2 z = 2 * y + 3

上記の例では、y と z の計算プロセスが両方とも計算グラフに記録されます。

3. 勾配計算とバックプロパゲーション

計算グラフが構築されると、.backward() メソッドを呼び出してバックプロパゲーションを実行し、勾配を自動的に計算できます。

 # 反向传播z.backward()

この時点で、x.grad にアクセスすることで x の勾配を取得できます。

 # 获取梯度print(x.grad)

4. グラデーショントラッキングを無効にする

場合によっては、特定の操作に対して勾配追跡を無効にしたいことがあります。その場合は、torch.no_grad() コンテキスト マネージャーを使用できます。

 with torch.no_grad(): # 在这个区域内的操作不会被记录在计算图中w = x + 1

5. グラデーションをクリアする

トレーニング ループでは、通常、勾配の蓄積を避けるために、各バックプロパゲーションの前に勾配をゼロにする必要があります。

 # 清零梯度x.grad.zero_()

完全な例: 線形回帰の自動微分

自動微分化のプロセスをより具体的に説明するために、単純な線形回帰の問題を考えてみましょう。線形モデルと平均二乗誤差損失関数を定義し、自動微分を使用してモデルパラメータを最適化します。

 import torch # 数据准备X = torch.tensor([[1.0], [2.0], [3.0]]) y = torch.tensor([[2.0], [4.0], [6.0]]) # 模型参数w = torch.tensor([[0.0]], requires_grad=True) b = torch.tensor([[0.0]], requires_grad=True) # 模型和损失函数def linear_model(X, w, b): return X @ w + b def mean_squared_error(y_pred, y_true): return ((y_pred - y_true) ** 2).mean() # 训练循环learning_rate = 0.01 epochs = 100 for epoch in range(epochs): # 前向传播y_pred = linear_model(X, w, b) loss = mean_squared_error(y_pred, y) # 反向传播loss.backward() # 更新参数with torch.no_grad(): w -= learning_rate * w.grad b -= learning_rate * b.grad # 清零梯度w.grad.zero_() b.grad.zero_() # 打印最终参数print("训练后的参数:") print("权重w:", w) print("偏置b:", b)

この例では、単純な線形モデルと平均二乗誤差損失関数を定義します。複数回のトレーニングの繰り返しを通じて

トレーニング サイクルでは、モデル パラメーター w と b が最適化され、損失関数が最小化されます。

やっと

PyTorch の自動微分化はディープラーニングを強力にサポートし、モデルのトレーニングをよりシンプルかつ効率的にします。

動的な計算グラフと勾配計算により、ユーザーは複雑なニューラル ネットワーク構造を簡単に定義し、自動微分による勾配降下法などの最適化アルゴリズムを実装できます。

これにより、ディープラーニングの研究者やエンジニアは、勾配計算の詳細を気にすることなく、モデルの設計と実験に集中できるようになります。

<<:  生成AIは昨年人気が高まったが、米国のIT関連の仕事の数はわずか700件しか増加しなかった

>>: 

ブログ    

推薦する

...

「検索」は終わり、「レコメンド」も終わるのか?

ザッカーバーグ氏は最近、苦境に立たされている。 Facebookが名前を「Meta」に変更して以来、...

宮崎駿アニメの世界を一筆でスケッチしよう!スタンフォード大学の大型模型「𝘚𝘬𝘦𝘵𝘤𝘩-𝘢-𝘚𝘬𝘦𝘵𝘤𝘩」、スケッチが数秒で傑作に変身

絵を描くだけで高精細な絵画が現れます。たとえば中世の城を描くには、ドアと道を描くだけで、美しい城が現...

...

機械学習アルゴリズムは簡単に詐欺を検出できるので、詐欺を恐れる必要はありません。

実のところ、誰もが詐欺防止を必要としているわけではありません。金融機関が最新の犯罪手法に追いつこうと...

...

Nvidiaが自動運転AIアルゴリズムをオープンソース化、チップ性能をXavierの7倍にアップグレード

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

金融業界は AI を活用してデータを強化する準備ができているでしょうか?

金融業界は国民経済の生命線です。モバイルインターネットやオンライン決済の普及により、データは企業にと...

...

5Gの商用化は加速し続け、自動運転との統合における価値が強調される

私の国が2019年に5Gを正式に開始してから2年以上が経ちました。 2021年に入り、わが国の5G開...

目録:2021年1月の人工知能分野における資金調達活動のリスト

過去2年間、人々の注目は5Gにますます集まっているものの、人工知能の発展と人気は少しも衰えていません...

2つのセッションにおけるインターネット大手の提案の要約:デジタル経済とスマートカーが頻出語に

[[385182]]中国人民政治協商会議第13期全国委員会第4回会議が2021年3月4日に北京で開催...

大学では人工知能を専攻できるコースはありますか?まだ道のりは長い

教育省は最近、「高等教育機関向け人工知能イノベーション計画」を発表し、「人工知能分野における人材育成...

...

ハッカーはAIの顔を変える技術を使って就職活動を行っている。人工知能のセキュリティ問題は無視できない

米国での流行後、多くの企業が「在宅勤務」(WFH)モデルを採用しました。 FBIの刑事告訴センターは...