IoT が成功するために AI が必要な理由

IoT が成功するために AI が必要な理由

モノのインターネットは膨大な量のデータを生成します。そのデータは、都市が事故や犯罪を予測するのに役立ち、医師にペースメーカーやバイオチップに関するリアルタイムの情報を提供し、機器や機械の予知保全を通じて業界全体で前例のない生産性を実現し、真にスマートな家電製品を生み出し、自動運転車間の重要な通信を提供します。モノのインターネットがもたらす可能性は無限です。

接続されたデバイスやセンサーが急速に拡大するにつれて、それらが生成するデータの量は飛躍的に増加し、この膨大な量のパフォーマンス データをどのように分析するかが最大の問題となります。

問題は、IoT がデータを生成する速度に追いつき、洞察を得る唯一の方法が機械学習であるということです。

[[270974]]

人工知能と機械学習とは何ですか?

人工知能とは、周囲の世界を認識し、計画を立て、目標を達成するための決定を下すインテリジェントエージェントの研究です。その基礎には、数学、論理学、哲学、確率論、言語学、神経科学、意思決定理論が含まれます。コンピュータービジョン、ロボット工学、機械学習、自然言語処理など、多くの分野が人工知能の傘下にあります。

機械学習は、コンピューターが自ら学習できるようにすることを目的とした人工知能の分野です。機械の学習アルゴリズムにより、機械はデータ内のパターンを識別し、明示的に事前にプログラムされたルールやモデルがなくても、世界を説明して物事を予測するモデルを構築できるようになります。

機械学習はなぜ重要なのでしょうか?

AI は他のどのイノベーションよりも私たちの未来を形作る力を持っており、それを理解していない人はすぐに取り残されることになるでしょう。

数回の AI の冬と「偽りのブーム」の後、データストレージとコンピューター処理能力の急速な発展により、ゲームのルールは劇的に変化しました。

機械学習はすでにコンピュータービジョン(画像やビデオ内のオブジェクトを認識する機械の能力)に大きな進歩をもたらしています。たとえば、数十万枚または数百万枚の写真を収集し、猫の写真にラベルを付けるなど、個別にラベルを付ける必要があるとします。次に、アルゴリズムは、猫の写真すべてに正確にラベルを付けるモデルを構築しようとします。精度が十分に高くなると、機械は猫がどのような外見をしているかを「理解」できるようになります。

たとえば、健康状態を追跡するウェアラブル デバイスはすでに新興産業ですが、近い将来、これらのデバイスは相互に接続し、インターネットに接続して、ユーザーの健康状態を追跡し、健康サービスにリアルタイムの更新情報を提供するデバイスへと進化するでしょう。

身体の指標の 1 つが閾値に達した場合、たとえば心拍数が危険なレベルまで上昇したり、停止したりした場合、医師に通知されます。潜在的な問題を正確に特定するには、データを正常と異常の両方の観点から分析する必要があり、そのためにはリアルタイムのデータ ストリームに基づいて類似点、相関関係、異常を迅速に特定する必要があります。医療サービスに従事する個人が、何千人もの患者のデータをリアルタイムで確認し、緊急情報をいつ送信するかを正しく判断するといったことを実行できるでしょうか。おそらく無理でしょう。既知のパターンをデータから検索するためのコードやルールを書くのは時間がかかり、エラーが多く、以前から知られているパターンを特定することに限られます。

収集されたデータをすぐに分析して、既知のパターンやこれまでに見たことのない新しいパターンを正確に識別するには、このビッグデータを生成して集約できるマシンを使用して、各患者の通常の行動を理解し、深刻な健康上の問題を示す可能性のある異常を追跡、発見、フラグ付けする必要もあります。

モノのインターネットの実現は、膨大かつ増え続けるデータの海に隠された洞察を獲得できるかどうかにかかっています。現在のアプローチでは IoT の規模にまで拡張できないため、IoT の約束された未来を実現するには、日常生活のあらゆる側面を改善する可能性のあるパターン、相関関係、異常を発見する機械学習に依存します。

機械学習は人工知能への道のりの中心であり、あらゆる業界を変革し、私たちの日常生活に大きな影響を与えるでしょう。

<<:  Google Brain の新しいアルゴリズムは TPU を使用せずに AI トレーニングを高速化できる

>>:  今日の生活における人工知能(AI)の実際的な意義

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ジャック・マー:将来的には仕事の50%が人工知能に置き換えられるだろう。そしてこの2つの業界はすでに始まっている。

インターネットとオンラインショッピングの普及は、一部のオフライン業界に前例のない影響をもたらしました...

コンピューティングパワーのコストが急激に上昇したため、AIスタートアップがGoogleやMicrosoftなどの大手に挑戦することが難しくなった。

2月20日のニュースによると、コンピューティングコストが急騰しているため、人工知能業界の新興企業は...

ディープラーニングを使用してコンピュータービジョンのすべての作業を完了するにはどうすればよいですか?

コンピュータービジョンをやってみたいですか?最近では、ディープラーニングが主流となっています。大規模...

マスク氏が突然ツイッター買収を希望、上場廃止に2700億ドルで入札。ツイッターとテスラの株価は下落

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

15億パラメータのモデルを2日間でトレーニングし、国内オープンソースプロジェクトがNvidiaのMegatron-LMを上回った

AIの現在の動向において、その徹底的な発展に影響を与える矛盾は何でしょうか?一方では、大型モデルが大...

...

...

2021年の3つの主要なAIトレンド:IoT、データ駆動型の意思決定、サイバーセキュリティ

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...

人工知能がファッションデザインと生産を変革

人工知能とロボット工学がファッション業界に変化をもたらしています。市場分析からカスタムデザイン、無駄...

ローコード機械学習ツール

機械学習は、ビジネスや世界中のさまざまな問題の解決に役立つ可能性があります。通常、機械学習モデルを開...

2021 年に人工知能が最も大きく発展する分野はどれでしょうか?

2021年のAIアプリケーションのハイライト[[438943]] 2021年は世界全体にとって非常...

...

人工知能がビジネスを徐々に変えていく

確かに、人工知能(AI)主導のテクノロジーが人間を不要にするか否かをめぐる議論は、少なくともこの聴衆...

歴史上3大AI失敗事例を徹底解説

[51CTO.com クイック翻訳] 今日言及された事故のほとんどはAI自体と直接関係はありませんが...

機械学習がインドのヘルスケア分野に変化をもたらす

ヘルスケア産業はインド経済において最大のセクターの一つとなっている。 NITIAyogの報告によると...