Stable Diffusion で 1 秒で写真を作成しましょう。清華大学マスターアクセラレーターはホットなトレンドで、いくつかの企業が参加している

Stable Diffusion で 1 秒で写真を作成しましょう。清華大学マスターアクセラレーターはホットなトレンドで、いくつかの企業が参加している

AI画像生成は秒単位のスピードに達しました。描画を完了するには4ステップの推論しかかからず、最速では1秒以内に完了します。

現在、清華大学とHuggingFaceの研究者らは、新しい描画モデル加速モジュールを立ち上げました。

作者が提供している試用版では、生成ボタンをクリックした後、わずか数秒でモデルが 4 つの鮮明な画像を描画しました。

このアクセラレーション モジュールは LCM-LoRA と呼ばれ、リリース後すぐに 2,000 を超える GitHub スターを獲得しました。

強力な加速機能と優れた一般化性能を備えているだけでなく、互換性のあるモデルの範囲も広く、SD モデルと LoRA モデルの両方を加速できます。

チームが独自に最適化した LCM-LoRA に基づくテキストベースのグラフ モデルは HuggingFace で体験できるようになり、画像ベースのグラフ モデルも CoLab やその他のバージョンでリリースされました。

AI描画ツールに素早くアクセス

LCM-LoRAがオープンソース化された直後、AI描画ツールメーカーのScenarioは、これをベースにした「リアルタイム描画」機能をリリースすると発表した。

𝕏で近日公開予定のリアルタイム描画機能DEMOも、シナリオのCEO自らが実演しました。

一方がスケッチを描いている間に、もう一方はAIが対応する絵を描いており、時間はほぼ同期していました。

プロンプト単語と関連パラメータを調整することで、モデルは迅速かつ効率的に応答します。

これらのデモが公開されると、世間から満場一致の賞賛が集まりました。

では、LCM-LoRA アクセラレーション モジュールはどれほど強力で、どのように実現されているのでしょうか?

メモリオーバーヘッドを削減する「スキップステップ」

LCM-LoRA は、潜在的一貫性モデル (LCM) の蒸留プロセスに LoRA を導入し、トレーニング メモリのオーバーヘッドを大幅に削減してパフォーマンスを向上させます。

LCM は潜在拡散モデル (LDM) から抽出され、「蒸留」プロセスは拡散モデルの微調整とも考えられます。

その中心的なアイデアは、画像の潜在変数空間における一貫したマッピング関数を学習することです。これにより、拡散プロセス内の任意の点を終点、つまり微分方程式の解に直接マッピングできます。

この一貫したマッピングにより、LCM は反復的なサンプリング プロセスをスキップし、数ステップまたは 1 ステップのサンプリングを直接実行できるため、画像生成が大幅に高速化されます。

ピクセル空間ベースの方法と比較すると、潜在変数空間演算では計算の複雑さとメモリ要件が低くなります。

LoRA と組み合わせると、低ランク分解行列のみをトレーニングすればよく、トレーニング可能なパラメータの量とメモリのオーバーヘッドがさらに削減され、適用範囲も単純なテキスト生成画像から画像生成画像やビデオ生成へと拡大されます。

最も直感的な表現は、数秒で画像が出力されることです。トレーニング時間に関して言えば、LCM-LoRA 最適化モデルは A100 でトレーニングするのに 32 GPU 時間しかかかりません。

トレーニング時間の短縮は、トレーニング パラメータの数が大幅に削減されたことにも密接に関係しています。

  • SD-V1.5 の総パラメータ数は 980 億です。LoRA を使用すると、トレーニング可能なパラメータは 6750 万に削減され、約 99.9% 削減されます。
  • SSD-1B パラメータの数は 130 億から 1 億 500 万に削減され、約 99% 削減されました。
  • SDXL パラメータの数は 350 億から 1 億 9,700 万に削減され、約 99.4% 削減されました。

トレーニングコストが削減されるだけでなく、推論プロセスのステップ数も大幅に削減されます。通常、高品質の画像を描くために必要な推論ステップは 4 つだけです。

場合によっては、FID スコアが 50 未満 (低いほど良い) で、1 秒未満で 1 ステップだけで完了できることもあります。

LCM-LoRAは優れた加速性能を備えているだけでなく、幅広い適応性も備えています。

LCM-LoRA トレーニングによって取得された LoRA パラメータは、加速度ベクトルとも呼ばれます。追加のトレーニングを必要とせずに、データセットの微調整によって取得された LoRA パラメータと直接線形結合できます。

この組み合わせにより、LCM-LoRA は、さまざまな微調整されたモデルに直接プラグインできる汎用画像生成アクセラレーション モジュールになります。

著者について

LCM および LCM-LoRA 論文の主著者は、清華大学学際情報科学研究所の大学院生 Simian Luo 氏と Yiqin Tan 氏です。

清華大学クロススクールの黄龍波准教授、李建准教授、趙星助教授もこの2つの研究に参加した。

HuggingFace の研究者も LCM-LoRA の研究に貢献しました。

論文の宛先:
[1] https://arxiv.org/abs/2310.04378
[2] https://arxiv.org/abs/2311.05556

<<:  ChatGPTの10の実用的なビジネスユースケース

>>:  GPT-4V の新しいゲームプレイは GitHub のホット リストのトップにランクインし、簡単な描画だけで Web ページを生成できるようになりました。ウェブ開発者:脅威を感じる

ブログ    

推薦する

LVS セットアップノート: 負荷分散アルゴリズム

先ほど、負荷分散を完了するための最初のステップである Linux LVS インストール プロセスを紹...

...

AI 駆動型データ分析ツールが企業や組織にもたらすメリット

AI を活用したデータ分析は、世界中の多くの企業にとって非常に役立つものになりつつあります。ますます...

2024 年の産業用ロボットのトップ 10 のトレンドとイノベーション

産業用ロボットの世界では、イノベーションのペースが加速し続けており、毎年、製造、自動化、作業の方法を...

...

...

2019 年の 9 つの AI トレンド、準備はできていますか?

人工知能は成長して以来、絶え間ない混乱に悩まされてきましたが、特に近年は人工知能が発展の黄金期に入り...

「アンティーク」GPUでもDeepSeekと同じGRPOを実行できます。ビデオメモリは1/10しか必要とせず、コンテキストは10倍に増加します

オープンソースの微調整ツール Unsloth が新しいテクノロジーを携えて戻ってきました。前回のアッ...

上級アーキテクトが初めて秘密を明かす:Toutiao の推奨アルゴリズムの原理を 3 分で学ぶ

[[217643]]現在、アルゴリズムの配布は、情報プラットフォーム、検索エンジン、ブラウザ、ソーシ...

8年が経ちました。Googleが中国に戻るという噂は本当でしょうか?

[51CTO.com オリジナル記事] Google の中国復帰について新たな声が上がっている。最...

人工知能業界を理解するにはどうすればいいのでしょうか?まず知っておくべき知識は何でしょうか?

人工知能の発展を理解したい場合、または人工知能の基本的な応用を理解したい場合は、まずいくつかの基本的...

画像認識は思ったほど難しくありません!この記事を読めばあなたも専門家になれる

[51CTO.com からのオリジナル記事] ローカルライフのシナリオには、メニュー認識、標識認識、...

...

「機械が人間に取って代わる」時代が到来。人類はこれからどう生き残っていくのか?

今年の春節祝賀会には、有名人よりも人気のある特別な俳優たちがいます。書道をしたり、ダンスをしたり、腕...

Daguan Data: ナレッジグラフと Neo4j の簡単な分析

現在のビッグデータ業界では、アルゴリズムのアップグレード、特に機械学習の導入により、「パターン発見」...