初のヒューマンモーションキャプチャーモデルをリリース! SMPLer-X: 7つのチャートを一掃

初のヒューマンモーションキャプチャーモデルをリリース! SMPLer-X: 7つのチャートを一掃

表現力豊かな人間の姿勢と形状の推定 (EHPS) の分野では大きな進歩が遂げられていますが、最も先進的な方法は依然として限られたトレーニング データセットによって制限されています。

最近、南洋理工大学のS-Lab、SenseTime、上海人工知能研究所、東京大学、IDEA研究所の研究者らが、人間の全身の姿勢と体型を推定するタスク向けに、初めて大型モーションキャプチャモデルSMPLer-Xを提案した。この研究では、さまざまなデータソースから最大 450 万のインスタンスを使用してモデルをトレーニングし、7 つの主要リストで新たな最高パフォーマンスを達成しました。

SMPLer-X は、一般的なボディ モーション キャプチャに加えて、顔や手の動きを出力したり、体の形状を推定したりすることもできます。

論文リンク: https://arxiv.org/abs/2309.17448

プロジェクトホームページ: https://caizhongang.github.io/projects/SMPLer-X/

SMPLer-X は、大量のデータと大規模なモデルを備え、さまざまなテストやランキングで優れたパフォーマンスを示し、未知の環境でも優れた一般化性を備えています。

1. データ拡張に関しては、研究者らはモデルトレーニングの参考として32個の3D人間データセットを体系的に評価・分析した。

2. モデルのスケーリングに関しては、このタスクでモデルパラメータの数を増やすことでもたらされるパフォーマンスの向上を研究するために、大規模な視覚モデルを使用します。

3. SMPLer-X の一般的な大規模モデルは、微調整戦略を通じて専用の大規模モデルに変換でき、さらなるパフォーマンスの向上を実現できます。

要約すると、SMPLer-X はデータのスケーリングとモデルのスケーリングを調査し (図 1)、32 の学術データセットをランク付けし、450 万のインスタンスのトレーニングを完了し、7 つの主要リスト (AGORA、UBody、EgoBody、EHF など) で新たな最先端のパフォーマンスを確立しました。

図1 データ量とモデルパラメータ数の増加は、主要リスト(AGORA、UBody、EgoBody、3DPW、EHF)の平均主誤差(MPE)の低減に効果的である。

既存の3D人間データセットの一般化に関する研究

研究者らは 32 の学術データセットをランク付けしました。各データセットのパフォーマンスを測定するために、そのデータセットを使用してモデルをトレーニングし、AGORA、UBody、EgoBody、3DPW、EHF の 5 つの評価データセットで評価しました。

異なるデータセット間の比較を簡単にするために、平均一次誤差 (MPE) も表に計算されています。

データセット一般化研究から学んだ教訓

多数のデータセット(図 3)の分析から、次の 4 つの結論を導き出すことができます。

1. 単一データセットのデータ量に関しては、100,000 インスタンスのデータセットをモデルトレーニングに使用することで、高い費用対効果を実現できます。

2. データ収集シナリオに関しては、野外データセットが最も効果的です。屋内でしか収集できない場合は、トレーニング効果を高めるために単一のシナリオを避ける必要があります。

3. データセットの収集に関しては、上位 3 つのデータセットのうち 2 つは生成されたデータセットであり、生成されたデータは近年優れたパフォーマンスを示しています。

4. データセットの注釈に関しては、疑似ラベル付きデータセットもトレーニングにおいて重要な役割を果たします。

大規模なモーションキャプチャモデルのトレーニングと微調整

現在の最先端の方法は、通常、少数のデータセット(MSCOCO、MPII、Human3.6M など)のみを使用してトレーニングされますが、この論文では、より多くのデータセットの使用を検討しています。

4 つのデータ サイズが使用され、常にランクの高いデータセットが優先されます。トレーニング セットとして 5、10、20、および 32 のデータセットが使用され、合計サイズは 750,000、150 万、300 万、および 450 万のインスタンスになります。

さらに、研究者らは、一般的な大規模モデルを特定のシナリオに適応させるための低コストの微調整戦略も実証しました。

上記の表には、AGORA テスト セット (表 3)、AGORA 検証セット (表 4)、EHF (表 5)、UBody (表 6)、EgoBody-EgoSet (表 7) など、主なテストの一部が示されています。

さらに、研究者らは、ARCTIC と DNA-Rendering という 2 つのテスト セットでモーション キャプチャの大規模モデルの一般化も評価しました。

研究者たちは、SMPLer-X がアルゴリズム設計を超えたインスピレーションをもたらし、学術界に強力な全身人間モーション キャプチャ モデルを提供することを期待しています。

コードと事前トレーニング済みモデルはオープンソースです。詳細については、プロジェクトのホームページをご覧ください: https://caizhongang.github.io/projects/SMPLer-X/

結果

<<:  北京大学チーム:大規模なモデルで「幻覚」を誘発するために必要なのは、文字化けしたコードの文字列だけです!大きなアルパカも小さなアルパカもすべて影響を受けた

>>: 

ブログ    
ブログ    
ブログ    

推薦する

GoogleはAIを使って「ヘッドフォンケーブル」をトレーニングし、タッチスクリーンのほとんどの機能を実現

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

あなたは人工知能(AI)を本当に理解していますか?将来、人工知能によって多くの人が失業することになるのでしょうか?

[[286906]]人工知能 (AI) は、通常は人間の思考を必要とするタスクを実行できるインテリ...

AIの使用後、機械は人間の皮膚に匹敵する触覚を持つ丨科学サブジャーナル

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

中国科学技術大学が提案したCNNとTransformerのデュアルネットワークモデルの精度は84.1%にも達する

[[416636]] Transformer と CNN はどちらも独自の利点を持ち、視覚表現を処理...

人工知能は祝福か、それとも呪いなのか?

ますますペースが速まるこの時代において、私たちは効率性を高め、ブレークスルーを追求し続けています。多...

AIによる価格比較、本当にあなたに代わって価格を比較してくれるのでしょうか?

ダブルイレブンの割引を計算するために、昨年どれだけの髪の毛が抜けたか覚えていますか?昨年、天猫は総取...

中国の良き叔父から12歳の開発者Jing Kunまで:DuerOSはすべての開発者に平等に力を与えます

スマート音声開発者はAIの「ゴールドラッシュ」を先導しています。 7月4日、第2回百度AI開発者会議...

人工知能:ニューノーマルにおける成長の原動力

人工知能技術は急速に発展し、成熟しつつあります。多くの最新のアルゴリズムと問題解決手法が日々革新され...

マスク氏はオープンAIの主任科学者に質問した。「いったい何を見てそんなに怖くなったのですか?」

2015年11月27日、イーロン・マスクはイリヤ・スツケヴァー氏がOpenAIの主任科学者として参...

...

AIに関する4つの最も一般的な誤解

[[398369]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

論文の90%はモデル中心です。AIの分野では、データとモデルのどちらが重要ですか?

モデルとデータは AI システムの基盤であり、これら 2 つのコンポーネントはモデルの開発において重...

スタンフォード大学の教授が、専門家以外の人向けにAIの核となる概念を1ページで定義

スタンフォード大学のクリストファー・マニング教授は、AI 分野の中核となる概念を 1 ページを使って...