物流でGenAIを効果的に活用するための鍵は、ユースケースを理解することです。

物流でGenAIを効果的に活用するための鍵は、ユースケースを理解することです。

GenAI を商品輸送という主要機能にどのように適用できるかは最初は明確ではないかもしれませんが、私たちの研究は GenAI 機能を物流目標に適用する機会を示しています。導入に関しては、チームを GenAI パイロットに突入させるのではなく、ビジネス リーダーは、今日のユースケースのアイデア創出と優先順位付けに重点を置く必要があります。

アイデア創出と優先順位付け

まず、サプライチェーンに GenAI を実装するための最初のステップは、ビジネスの優先事項に沿ったユースケースのアイデアを考案し、GenAI の変革の可能性を活用することです。 GenAI は次の 5 つの一般的なタスクをサポートできます。

1. 書面コンテンツの拡張と作成: テキストの下書き出力を作成し、ユーザーがそれを確認します。

2. 質問と回答、チャットボット、情報発見: データとプロンプト情報に基づいて回答を見つけて入力します。

3. 要約: テキスト処理は、たとえば、言語を和らげたり、テキストを専門的にしたりするために使用できます。

4. 特定のユースケースに合わせてコンテンツを分類する: 会話、記事、電子メール、Web ページのスニペットを短縮し、要点に変換します。

5. ソフトウェアコーディング: コードの生成、翻訳、解釈、検証を提供します。

物流リーダーは、物流戦略、物流パフォーマンス、貨物輸送、物流技術、アウトソーシング、輸送、物流企業、倉庫管理、国際貿易管理という物流の 9 つの機能領域に基づいてこれらのタスクを評価する必要があります。潜在的なユースケースについてチームと話し合い、どのユースケースが最も適しているか、また、サプライ チェーン、ロジスティクス、ビジネスの優先事項全体に合致しているかを判断します。

たとえば、GenAI が物流管理のテクノロジーをどのようにサポートできるかを考えてみましょう。輸送管理システム (TMS) や倉庫管理システム (WMS) などのソフトウェア プログラムとツールは、プログラムの使用方法や一般的な問題のトラブルシューティング方法を説明したユーザー マニュアルをチームに提供します。 GenAI は書面によるコンテンツの自動化と作成をサポートするため、提供された仕様と資料に基づいて資料を迅速に作成でき、チームは他の優先事項に集中できます。さらに、GenAI 機能をイベント ログに適用して、ユーザーの自然言語、フリーテキストの機能要求、ソリューション フィードバックを集約し、物流における一連のイベントや例外管理を伝達または記録することができます。

もう 1 つの例は、GenAI を使用して管理ロジスティクス エンタープライズ設計をサポートすることです。 GenAI は、新入社員のオンボーディング プランの作成、企業構造図の生成、職務記述書の作成などのタスクに役立ちます。さらに、質問回答、チャットボット、情報検出機能を通じて、新入社員からのベストプラクティスや次のステップに関する質問も簡素化できます。

チームとリーダーは、物流リーダーとしての役割や物流チーム内の役割に関連する各機能領域のユースケースの開始リストを生成して確認できます。そこから、サプライチェーンに GenAI を実装する次のステップは、チームが実際に追求するユースケースに優先順位を付けることです。いくつかの GenAI ユースケースのみを優先し、価値と実現可能性のバランスが取れた小規模なポートフォリオを構築することをお勧めします。

GenAIの物流におけるチャンス

物流リーダーが GenAI のユースケースを業務にどのように適用するか、または業務をどのように改善するかを検討し始める際には、組織の成熟度、内部能力、データと人材の可用性を評価する必要があることも覚えておくことが重要です。

高度に洗練された企業には、ソリューションを開発およびカスタマイズするためのテクノロジー、データ、才能がある場合があります。一方、成熟度の低い企業では、これらの要件の 1 つ以上が満たされていない可能性があり、提携しているテクノロジー プロバイダーまたはサービス プロバイダーからの組み込み製品を検討する必要があります。

すぐに成果が得られるかどうかを考えることも重要です。これは新しく、急速に進化する分野であるため、企業がすでに使用しているソリューションやテクノロジーに組み込まれたオプションを活用することで、より迅速な成果が得られます。同じことが、物流機能の明らかな使用例のほとんどにも当てはまります。

最後に、サプライ チェーンと物流業務における人的要素を見逃さないことが重要です。 GenAI 機能は生産性と効率性の向上を約束しますが、価値を実現するには人間のドメイン知識を考慮し、戦略に組み込む必要があります。

<<:  GitHub のスターや Kaggle のいいねを公に販売する「ブラックマーケット」がますます露骨になっていませんか?

>>:  作業効率を大幅に向上できるAIツール

ブログ    
ブログ    
ブログ    

推薦する

人工知能は改めてすごいですね!科学者は偶然、死者を「蘇らせる」ことができることを発見した

マイクロソフトは現在、チャットボットを開発中との報道もある。将来的に実用化に成功すれば、デジタル技術...

...

ファーウェイ、2025年のトップ10トレンドを発表:大企業の97%がAIを導入

世界の人口の58%が5Gネットワ​​ークにアクセスできるようになり、14%の家庭に「ロボット執事」が...

...

...

...

人事戦略と人材開発の形成における AI の役割

AI の力を活用することで、人事チームは複雑な課題に対処し、効率性を向上させ、前向きな職場環境を育む...

製造業に人工知能を適用するにはどうすればよいでしょうか?

現在、製造企業で使用されている人工知能技術は、主にインテリジェント音声対話製品、顔認識、画像認識、画...

人工知能は進歩しすぎているのでしょうか?この記事を読めば、誰もが人工知能の歴史を理解できる

人工知能は常に人々に非常に高級感を与えます。人々に役立つものの意味と価値を理解する必要があります。 ...

顔認識ソフトウェアはクマや牛の顔を見分けることを学習中

クマの生物学者メラニー・クラップハムは、カナダのブリティッシュコロンビア州で10年以上にわたりハイイ...

AI人工知能がアパレル業界に侵入し、大量の「鉄丼」が解雇に直面!

[[238920]]ファッション業界における人工知能(AI)技術の応用はますます深く広範囲になって...

ICML 2023 優秀論文賞発表!北京大学の卒業生が作品で賞を受賞、3人の中国人作家が作品に参加、DeepMindとAppleも選出

ICML 2023 の賞品が発表されました!今年は32件の候補論文の中から6件が優秀論文賞を受賞しま...

...

AIは単なる機械学習ですか?機械学習とは何かを3000語でわかりやすく説明します

コンピューター科学者は、人工知能の中核技術である機械学習とディープラーニングにおいて大きな進歩を遂げ...

BAIRの最新のRLアルゴリズムはGoogle Dreamerを上回り、パフォーマンスが2.8倍向上しました。

ピクセルベースの RL アルゴリズムが復活しました。BAIR は対照学習と RL を組み合わせたアル...