プロジェクトの失敗を促しますか? MITとスタンフォードでは、大きなモデルが積極的に質問し、あなたが何を望んでいるかを把握できるようにしています

プロジェクトの失敗を促しますか? MITとスタンフォードでは、大きなモデルが積極的に質問し、あなたが何を望んでいるかを把握できるようにしています

予想通り、リマインダーエンジニアリングは消えつつあり、この新しい研究はその理由を説明しています。

何百万人ものフォロワーを持つAI界の大物Vからのツイートが皆に衝撃を与えた。

ご存知のとおり、プロンプトエンジニアリングは ChatGPT トレンドのホットワードです。そこから派生したプロンプティングエンジニアという新しい職種は、年間数十万ドルもの収入が得られる可能性があり、「将来的には誰もがプロンプティングエンジニアリングを学ばなければならない」という見方が白熱した議論を巻き起こしている...

その結果、プロンプトプロジェクトは消え始めているのでしょうか? ? ?

そしてそれは十分に根拠のあるものです。

ブロガーのEthan Mollick氏が言及した論文は、MIT、スタンフォード、およびAnthropic (Claude2の作成者)が共同で提案したものです。

この論文では、大規模なモデルが人間に積極的に質問し、ユーザーの好みを自ら理解することを学習できる新しい機械学習フレームワークを提案しています。

彼らは GPT-4 を使用して実験を行い、プロンプト エンジニアリングや教師あり学習などの方法と比較して、このフレームワークの助けを借りて、 GPT-4 は複数のタスクで人間をよりよく理解することを発見しました。

大規模なモデルが人間の考えをより簡単に推測できるようになれば、人間自身が自分の考えを表現するために頭を悩ませる必要がなくなるということになります。

そこでイーサン・モリックは、これは誰もがプロンプトエンジニアリングを学ぶ必要がないということを意味しているのでは?と考えました。

一部のネットユーザーは、これはある程度、将来的にはLLMと言語なしでコミュニケーションできるようになることを意味すると付け加えた。質問することで、大きなモデルが私たちの考えを理解できるようになるのは大きな前進です。

AIがあなたにアドバイスします

具体的には、本研究では新しい学習フレームワークGATE (Generative active task elicitation)を提案しました。

ビッグモデル自体の機能に基づいて、人間のユーザーの好みを引き出し推測することができます。

研究チームはこれをより積極的なアプローチと呼んでおり、これは大規模なモデルがユーザーに質問して人間の好みをより明確に表現できるようにすることで実現されている。

同様に、教師あり学習とプロンプト エンジニアリングはどちらも受動的な方法であり、教師あり学習と少量の能動学習も例に基づいています。

なぜ私たちは「率先して」人間にヒントを与えなければならないのでしょうか?

人間が提供するプロンプトには限界があり、ユーザーの好みを正確かつ完全に表現できない場合があるからです。

たとえば、プロンプト エンジニアリングを理解していない人や、プロンプト プロセス中に誤解を招く情報を提供している人などが多くいます。これにより、大規模モデルのパフォーマンスが低下します。

論文に例が示されています。ユーザーがテニス関連の記事を読むのが好きで、テニスツアーやサーブテクニックに興味があると言っているとします。しかし、彼が提供した記事の参考文献からは、彼がテニスに関連する他のトピックに興味を持っているかどうかはわかりません。

したがって、大規模なモデルがいくつかの質問スキルを学習できれば、ユーザーの好みをより狭い範囲に固定することができます。

この研究では、大規模なモデルで、ユーザーがラベル付けしたサンプルを積極的に生成したり、はい/いいえで質問したり、自由形式の質問をしたりするなど、さまざまな質問方法を試すことができました。

テストされる主なタスクは、コンテンツの推奨、道徳的推論、電子メールの検証です。

結果は、3 つのタスクにおいて、GATE に含まれる方法が他の方法よりも優れていることを示しています。

このフレームワークを使用する大規模なモデルは、使用するのが面倒ではありません(下の左側の図を参照)

そして、この方法の導入は、人間のユーザーの本来の好みに影響を与えません(下の右の図に示すように)

著者らは、より大きなモデルの方がより良いガイドになる可能性があると考えており、実験では GPT-4 を使用しました。

医療や法律など複雑な意思決定が求められる分野は、GATEフレームワークの今後の拡大方向となるでしょう。

この研究は、MIT、Anthropic、スタンフォード大学の学者によって共同で開始されました。

「私たちは今でも迅速なエンジニアリングに頼っています」

この研究は、迅速なエンジニアリングに関する議論の波も引き起こしました。

リマインダーエンジニアリングが消滅しつつあるということに誰もが同意するわけではありません

AI界のもう一人の大物、エルビス氏は、この研究は人間の好みに関するこれまでの研究とあまり変わらず、依然として迅速なエンジニアリングに頼らなければならないと述べた。

LLM のトレーニング方法や作業方法に体系的な変更がない限り、「人間の意図/好みを理解する」ことで迅速なエンジニアリングがなくなることはないと思います。

リマインダー プロジェクトは単にフロントエンドから消えて、形式が変わるだけだと考える人もいます。

別の人が尋ねたところによると、リマインダー プロジェクトが消滅したら、リマインダー エンジニアを雇うために多額の費用を費やした人々はどうなるのでしょうか?

しかし、研究自体に戻ると、このプロジェクトは多くの人にとってまだ難しいものであることが示唆されています。一部のネットユーザーは、これが多くの人々がChatGPTを受け入れられない主な理由であると考えています。

どう思いますか?

論文アドレス: https://arxiv.org/abs/2310.11589

<<: 

>>: 

ブログ    

推薦する

ニューロモルフィック・コンピューティングが私たちを AI の新しい時代へと導くのはいつでしょうか?

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...

北京地下鉄は顔認識技術を使用して機密のセキュリティチェックを実施する予定

[[280913]] Jiwei.comニュース(文/Jimmy)によると、北京軌道交通指揮センター...

...

2022年ワールドカップ、審判の補助に人工知能を導入

2022年FIFAワールドカップは、今年11月21日から2022年12月18日までカタールで開催され...

自動運転で冬季オリンピックはよりスマートに

[[438829]]発進時に左ウィンカーを出し、歩行者がいる場合はスピードを落として迂回し、障害物が...

7Sモデルを活用してAI変革を成功させる

多くの組織と連携する顧客関係管理 (CRM) コンサルタントとして、AI を主要な検討テーマとして見...

AIは病気の診断や新薬の設計に大きな可能性を秘めている

ヘルスケア業界は常にイノベーションの先駆者であり続けています。しかし、病気やウイルスが変異し続ける中...

本当に知っておくべき 10 の AI テクノロジートレンド

人工知能技術のトレンドは人類を前進させています。デジタル変革はあらゆる業界に広がり、人工知能は科学者...

...

データマイニング分野のトップ 10 の古典的なアルゴリズムの 1 つ - CART アルゴリズム (コード付き)

導入CART は C4.5 に似ており、決定木アルゴリズムの一種です。さらに、一般的な決定木アルゴリ...

産業用 AI チェックリスト: 始めるための 10 ステップ

人類はもはや人工知能(AI)の波から逃れることはできない。彼らが行くところすべてで、最新の AI ソ...

マルチモーダル LLM 幻覚問題が 30% 減少しました!業界初の「キツツキ」無重力トレーニング法が誕生

大規模なマルチモーダル モデルの「幻覚」問題を解決するために、まだ命令の微調整を使用していますか?例...

企業における機械学習: 次の 1 兆ドル規模の成長はどこから来るのでしょうか?

ハリー・ポッターの世界では、組分け帽子は生徒の行動履歴、好み、性格に関するデータを取得し、そのデータ...