Ant Financialが機械学習ツールSQLFlowをオープンソース化、機械学習はSQLよりも簡単

Ant Financialが機械学習ツールSQLFlowをオープンソース化、機械学習はSQLよりも簡単

5月6日、アント・ファイナンシャルの副CTOである胡曦氏はオープンソースの機械学習ツールSQLFlowを正式に発表し、「今後3年間で、AI機能はすべての技術者の基本的な機能となるでしょう。SQLFlowをオープンソース化することで人工知能アプリケーションの技術的ハードルを下げ、技術者がSQLと同じくらい簡単にAIを呼び出せるようにしたいと考えています。」と述べた。

現在、SQLFlow は GitHub で 1,636 個のスターと 236 個のフォークを獲得しています。 (GitHub アドレス: https://github.com/sql-machine-learning/sqlflow)

SQLFlow の目標は、SQL エンジンと AI エンジンを接続し、ユーザーがわずか数行の SQL コードでアプリケーションまたは製品全体の背後にあるデータ フローと AI 構造を記述できるようにすることです。関連する SQL エンジンには、MySQL、Oracle、Hive、SparkSQL、Flink など、SQL またはその派生語を使用してデータを記述したり、データに対する操作を記述したりすることをサポートするシステムが含まれます。ここで言う AI エンジンには、TensorFlow や PyTorch などのディープラーニング システムのほか、XGBoost、LibLinear、LibSVM などの従来の機械学習システムも含まれます。

SQLから機械学習へ

SQLFlow は、拡張構文を持つ SQL プログラムを、submitter と呼ばれるプログラムに変換して実行するトランスレータとして考えることができます。 SQLFlow は、さまざまな SQL エンジンを同じエンジンに抽象化する抽象化レイヤーを提供します。 SQLFlow は、さまざまな変換メカニズムをプラグインして、さまざまな AI エンジンに基づく送信プログラムを取得できる拡張可能なメカニズムも提供します。

SQLFlow が SQL 構文を拡張する目的は単純です。SELECT ステートメントの後に拡張構文を持つ TRAIN 句を追加することで、AI モデルのトレーニングを実装できます。あるいは、PREDICT 句を追加して、既存のモデルを使用して予測を行うこともできます。この設計により、データ アナリストの学習パスが大幅に簡素化されます。

さらに、SQLFlow は、データの特性に基づいてデータを自動的に機能に変換する方法を推測するために、さまざまな送信者翻訳プラグインで使用できるいくつかの基本関数も提供します。この方法では、ユーザーは TRAIN 句で変換を記述する必要がありません。

上記の設計意図は、SQLFlow のオープン ソース コードに反映されています。もちろん、SQLFlow の開発期間はまだ比較的短く、十分に詳細化されていない領域がまだたくさんあります。 Ant Financial のオープンソースのもう 1 つの目的は、さまざまな SQL エンジン チームや AI チームと連携して、データと AI の架け橋を構築することです。

以下は、サンプル データ Iris.train を使用して Tensorflow DNNClassifer モデルをトレーニングし、トレーニング済みのモデルを使用して予測を実行する例です。 SQL を使用してエレガントな ML コードを記述すると、いかにクールであるかがわかります。

  1. sqlflow> SELECT *
  2. iris.trainより
  3. DNN分類器のトレーニング
  4. n_classes = 3、hidden_​​units = [10, 20]の場合
  5. がく片の長さ、がく片の幅、花弁の長さ、花弁の幅
  6. LABELクラス
  7. sqlflow_models.my_dnn_modelにコピーします
  8.  
  9. ...
  10. トレーニングセットの精度: 0.96721
  11. トレーニング完了
  1. sqlflow> SELECT *
  2. iris.testより
  3. 予測 iris.predict.class
  4. sqlflow_models.my_dnn_model を使用します。
  5.  
  6. ...
  7. 予測完了。予測テーブル: iris.predict
  8. ...
  9. トレーニングセットの精度: 0.96721
  10. トレーニング完了

<<:  人材獲得競争で大学に残ることを選んだAI研究者

>>:  畳み込みニューラルネットワークが分かりませんか?怖がらないでください、このかわいい写真を​​見ればわかりますよ!

ブログ    

推薦する

DeepMindの長い記事によると、AlphaZeroのブラックボックスニューラルネットワークが学習した知識は基本的に人間の知識と似ているという。

AlphaZero がチェスをプレイすることと人間がチェスをプレイすることの違いは何ですか?あなた...

ぜひ見に来てください!数千の「AIブラックテクノロジー」がここに集結

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

1つの記事で基本モデルの定義と動作原理を理解する

翻訳者 |ブガッティレビュー | Chonglou 1.基本モデルの定義ベースモデルは、大量のデータ...

RSAは暗号化アルゴリズムへのバックドアの追加を否定

米国のセキュリティサービスプロバイダーRSAは昨日、同社が米国国家安全保障局(NSA)と協力して暗号...

...

マイクロソフトは小売業界で新たなスキルを解き放つために人工知能を推進

NRF 2024: Retail’s Big Show に先立ち、マイクロソフト社は、ショッピング体...

今日の世界において顔認識の重要性は何でしょうか?

顔認識技術の賛否は議論の余地がある。多くの利害関係者は利点を強調したが、批評家は欠点も指摘した。顔認...

...

人工知能、ロボット工学、そして道徳的リスク

人工知能は、産業用ロボットやロボットプロセス自動化 (RPA) における新たなアプリケーションを推進...

中国の人工知能コンピューティングパワーレポート:インターネット産業への投資が最も多く、都市ランキングでは杭州が1位

「中国の人工知能の応用と商業化の探究は世界と同レベルだが、コンピューティングパワー、アルゴリズム技術...

マスク氏はテスラの完全自動運転が今年中に利用可能になると予測するが、AIの大きな変化を懸念している

同氏は、テスラは人間の介入なしの完全自動運転の実現に近づいていると述べ、完全自動運転の実用性と自動車...

...

...