大規模AIモデルに対するいくつかの攻撃方法

大規模AIモデルに対するいくつかの攻撃方法

人工知能やビッグデータなどの新技術の応用と推進に伴い、ビッグモデルも人気の技術となっています。もちろん、組織や個人はさまざまなテクノロジーを使って攻撃を始めるでしょう。

モデルに対する攻撃には多くの種類がありますが、よく言及されるもののいくつかを以下に示します。

(1)敵対的サンプル攻撃:

敵対的サンプル攻撃は、最も広く使用されている機械学習攻撃方法の 1 つです。攻撃中、攻撃者は元のデータ サンプルに小さな変動 (モデルを欺く可能性のある誤った分類や予測など) を追加して敵対的サンプルを生成し、モデル機能を変更せずに機械学習モデルの分類器出力を誤解させます。

(2)データポイズニング攻撃:

データ ポイズニング攻撃は、モデルの使用を破壊または破壊するために、トレーニング データに誤ったデータや破壊的なデータを追加することによって実行されます。

注: 敵対的サンプル攻撃とデータ汚染攻撃は多少似ていますが、重点を置く側面が異なります。

(3)モデル窃盗攻撃:

これは、ブラックボックス検出を使用してモデルを再構築したり、トレーニング データを回復したりするモデル反転および盗難攻撃です。

(4)プライバシー漏洩攻撃:

データはモデルのトレーニングに使用される中核的な資産であり、攻撃者が正当な接続やマルウェアからこのデータを不正に取得し、ユーザーのプライバシーを侵害する可能性があります。そして、それを使用して独自の機械学習モデルをトレーニングし、データセットのプライバシー情報を漏洩させます。

もちろん、セキュリティ保護の方法は数多くありますが、以下はそのほんの一部です。

(1)データ拡張

データ拡張は、データセット内のサンプルの数と多様性を増やすことができる一般的なデータ前処理方法です。このテクノロジーはモデルの堅牢性を向上させ、敵対的サンプル攻撃の影響を受けにくくするのに役立ちます。

(2)敵対的訓練

敵対的トレーニングは、敵対的サンプル攻撃から身を守るためによく使用される方法でもあります。敵対的サンプルからの攻撃に抵抗する方法をモデルが学習できるようにすることで、攻撃に対するモデルの堅牢性が向上し、モデルが敵対的サンプルに適応しやすくなります。

(3)モデル蒸留

モデル蒸留技術により、複雑なモデルを小さなモデルに変換できます。小型モデルの方がノイズや外乱に対して耐性が高いためです。

(4)モデルの統合

モデル統合とは、複数の異なるモデルを使用して予測を行うことで、敵対的サンプル攻撃のリスクを軽減することです。

(5)データのクリーニング、フィルタリング、暗号化

データのクリーニング、フィルタリング、暗号化も一般的に使用される保護方法です。

(6)モデルの監視とレビュー

モデルの監視と監査は、トレーニング プロセスと予測タスクにおける異常な動作を識別し、モデルの脆弱性を早期に検出して修正するのに役立つプロセスです。

今日の技術の急速な発展により、攻撃者はさまざまな技術的手段を使用して攻撃を仕掛け、防御者はセキュリティ保護を強化するためにより多くの技術を必要としています。したがって、データのセキュリティを確保しながら、新しい技術と方法を常に学び、適応する必要があります。

<<:  自動運転によって交通事故はどれくらい減らせるのでしょうか?

>>: 

推薦する

OpenAIの競合InflectAIがマイクロソフトとビル・ゲイツの支援を受けて13億ドルを調達

OpenAIの競合企業Inflection AIは最近、Microsoft、リード・ホフマン、ビル・...

サイバーセキュリティの専門家が知っておくべきAIフレームワーク

1. AIフレームワークの重要性AIフレームワークは、人工知能のオペレーティングシステムであり、基本...

BEVFusionを超えて! Lift-Attend-Splat: 最新の BEV LV 融合ソリューション

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...

LLM ウィザード、コードの事前トレーニングは魔法の杖です! UIUC中国チームがコードデータの3つの利点を明らかに

大規模モデルの時代における言語モデル (LLM) は、サイズが大きくなるだけでなく、トレーニング デ...

...

AIを活用してパイロットプロジェクトを計画する方法

人工知能 (AI) は、あらゆる業界の企業にビジネス運営の成長と改善の機会を提供します。 Fortu...

今日の世界において顔認識の重要性は何でしょうか?

顔認識技術の賛否は議論の余地がある。多くの利害関係者は利点を強調したが、批評家は欠点も指摘した。顔認...

敵対的サンプルとディープニューラルネットワークの学習

概要過去 6 か月間で、人工知能の分野は科学技術分野で最も頻繁に言及される用語の 1 つになりました...

キング・オブ・グローリーのプレイからサッカーのプレイまで、テンセントのAIが再び進化

テンセントは12月30日、同社の人工知能チームが第1回Google Football Kaggleコ...

RNN と LSTM は弱いです!注目モデルは王様!

リカレント ニューラル ネットワーク (RNN)、長期短期記憶 (LSTM)、これらの人気のニューラ...

...

あなたの次のオフィスアシスタントはロボットでしょうか?

2014年、日本のソフトバンクモバイルストアに新たな仲間が加わった。それは、人の表情や声のトーンを...

AIの4つのタイプについてお話しましょう

人工知能が流行するにつれ、人々はそれがどのように機能し、何ができるのかについて多くの疑問を抱いていま...

ディープラーニングの最適化を理解するにはどうすればよいでしょうか?勾配降下法の軌跡を分析することで

ニューラル ネットワークの最適化は本質的に非凸ですが、単純な勾配ベースの方法は常にこのような問題を解...