AIがデータ侵害やデータ損失の防止にどのように役立つか

AIがデータ侵害やデータ損失の防止にどのように役立つか

サイバーセキュリティは長期にわたる戦いです。 日々新たな脅威が出現し、最高情報セキュリティ責任者 (CISO) はそれに追いつくのに苦労しています。 彼らは警報に圧倒され、チームの人員は不足していました。 その結果、CISO とそのチームは、組織を危害から守るための新しい革新的な方法を見つけるよう常にプレッシャーを受けています。 この課題に対処する 1 つの方法は、人工知能 (AI) の力を活用することです。 AI を使用すると、潜在的な脅威を特定し、反復的なタスクを自動化し、人的リソースを解放して、CISO がより戦略的な取り組みに集中できるようになります。 ただし、AI は魔法の解決策ではないことを覚えておくことが重要です。 サイバーセキュリティにおける人間の専門知識と経験の必要性を置き換えることはできません。 むしろ、これは CISO とそのチームが拡大するサイバーセキュリティ環境をより適切に管理するのに役立つツールとして捉えるべきです。

データ侵害はますます一般的になり、その結果は企業にとって壊滅的なものとなる可能性があります。 データ侵害の通知や信用監視などの直接的なコストに加えて、ビジネスの損失や評判の低下などの間接的なコストもあります。 データ侵害を自動的に検出して阻止するソリューションに投資することで、CISO とセキュリティ チームの負担を軽減できます。 機械学習はそのような解決策の 1 つです。

機械学習の仕組み

機械学習は、明示的にプログラムすることなくコンピューターがデータから学習できるようにする人工知能の一種です。 機械学習アルゴリズムはデータを使用してモデルをトレーニングし、そのモデルを使用して予測や推奨を行います。 データ セキュリティでは、機械学習を使用して、データ侵害の兆候となる可能性のあるデータ セット内の異常を検出するモデルを構築できます。

たとえば、従業員のログイン記録のデータセットがあるとします。 機械学習アルゴリズムを使用して、特定のログイン試行が正当かどうかを予測するモデルを構築できます。 モデルは、異常なログイン試行にフラグを付けて、さらに調査を行うことができるようになります。

機械学習はどのようにしてデータ侵害を防ぐのでしょうか?

機械学習は、さまざまな方法でデータ侵害を防ぐのに役立ちます。 これを行う 1 つの方法は、攻撃者がシステムの脆弱性を悪用する前に、その脆弱性を特定することです。 もう 1 つのアプローチは、ユーザーのアクティビティを監視し、侵害の試みを示す可能性のある疑わしい動作にフラグを立てることです。 最後に、侵害が検出されると、機械学習を使用して迅速に封じ込めることができます。

クレデンシャルスタッフィングとは何ですか?

クレデンシャルスタッフィングは、盗まれたユーザー名とパスワードのペアを使用してユーザーアカウントに不正にアクセスするサイバー攻撃です。攻撃者は、他の組織でのデータ侵害から入手した侵害された資格情報のリストを使用して、被害者のアカウントに大量にアクセスすることがよくあります。この手法は自動化されていることが多く、1 人の攻撃者が短期間で数千のアカウントを侵害することが可能になります。

人工知能は、クレデンシャルスタッフィング攻撃を検出し、防止する上で重要な役割を果たすことができます。 AI は、ユーザーの行動パターンを識別することで、攻撃の試みや成功を示す可能性のある異常なアクティビティを識別するのに役立ちます。

AI はこれらすべてにどのように適合するのでしょうか? AI は、クレデンシャル スタッフィング攻撃を検出して防止する上で重要な役割を果たすことができます。 AI は、ユーザーの行動パターンを識別することで、攻撃の試みや成功を示す可能性のある異常なアクティビティを識別するのに役立ちます。たとえば、9 時から 5 時まで勤務する従業員が突然午前 3 時に機密データベースにアクセスし始めたり、オハイオ州の従業員が中国からログインしているように見える場合、これは何か不正なことが起こっている兆候である可能性があります。 AI は、ユーザーの行動を継続的に監視し、異常なアクティビティにフラグを立てることで、クレデンシャル スタッフィング攻撃やその他の新たな脅威から組織を保護するのに役立ちます。

なぜ機械学習に投資するのでしょうか?

データ損失から身を守りたい企業にとって、機械学習への投資は賢明な選択です。 機械学習は、データ侵害が発生する前に阻止する効果的な方法であり、侵害が発生した場合でも侵害を封じ込めるのに役立ちます。 それだけでなく、機械学習に投資することで、セキュリティを真剣に受け止めていることを顧客に示すことができ、CISO やセキュリティ チームの負担を軽減できます。

データセキュリティに機械学習を使用する利点

機械学習を使用してデータを安全に保つことには、次のような多くの利点があります。

  • 精度の向上: 人間は間違いを犯します。 私たちは疲れたり、間違いを犯したり、時には物事を見落としたりします。 一方、機械学習アルゴリズムには、このような制限はありません。 つまり、潜在的な脅威を特定する精度を向上させることができます。
  • より高速な検出: 機械学習モデルをトレーニングすると、人間よりもはるかに高速にデータを分析できるようになります。 つまり、潜在的な脅威をより迅速に特定し、封じ込めることができるということです。
  • スケーラビリティ: 企業が処理しなければならないデータの量は今後も増加し続けるでしょう。 機械学習アルゴリズムは、人間よりも効率的に大量のデータを処理できるため、ビッグデータ環境に適しています。
  • 応答時間の改善: 潜在的な脅威をより早く特定できれば、応答時間も短縮されます。 機械学習を使用してデータを安全に保つことで、企業はデータ侵害による被害を最小限に抑えることができます。

AI を使用してユーザーの行動パターンを識別することで、組織は攻撃の試みや成功を示す可能性のある異常なアクティビティを検出できます。 このように、AI は、クレデンシャル スタッフィング攻撃やその他の新たな脅威から組織を保護する上で重要な役割を果たすことができます。 データ侵害はますます頻繁に発生していますが、解決策はあります。 機械学習など、データ侵害の検出と封じ込めを自動化するソリューションに投資することで、CISO やセキュリティ チームの負担を軽減し、侵害による被害を最小限に抑えることができます。

<<:  世界に革命をもたらす新たなテクノロジートレンド

>>:  生成型 AI が従来のデータベースを破壊する 10 の方法

ブログ    

推薦する

ユニバーサルで説明可能なAIコンピューティングハードウェア設計は、EDAにおける次の革命的な技術となるでしょう。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

私の国の医薬品人工知能市場は急速な成長期に入っている

3月23日から26日まで、2021年重大健康産業(重慶)博覧会と第6回双品会が重慶で開催されました。...

顔認識を禁止した後、サンフランシスコは検察官の事件処理を支援するためにAIを活用

最近、海外メディアの報道によると、サンフランシスコ市は7月1日に導入予定の「偏見削減ツール」を発表し...

...

畳み込みニューラルネットワークに関する15の質問:CNNと生物視覚システムの研究と探究

CNN 開発の初期には、脳のニューラル ネットワークから多くのインスピレーションを得ました。現在では...

効率的なテストデータ生成と管理のための生成AI

傑作を作ろうとしている画家が、限られたパレットに制限されているところを想像してみてください。彼らは美...

AIベースのクラウド管理ツールではコンテキストが重要

AI を活用したクラウド管理ツールはまだ導入の初期段階にありますが、IT 業界の専門家は、このような...

インダストリー4.0における人工知能

人工知能は、強化された接続性とインテリジェントな自動化を通じて、インダストリー 4.0 に破壊的な変...

Googleとハーバード大学がこれまでで最も複雑な3D脳マップを作成

脳の神経回路を研究するのは簡単ではありません。なぜなら、現時点では、すべてのニューロン、シナプス、そ...

...

前例のない変化:パンデミックはテクノロジーと未来を急速に形作っている

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

ユーモアを理解し、皮肉のスキルに溢れた、マスクのChatGPTのライバルがついにチャットのスクリーンショットを公開

最近、マスク氏の伝記「イーロン・マスク:伝記」が国内外でベストセラーとなった。この本には、マスク氏の...

2021年の中国AI音声認識産業の市場現状と発展見通しの分析

2020年、中国のスマート音声市場規模は113.96億元に達し、前年比19.2%増加した。中国のスマ...

マルチモーダル生体認証の利点を分析した記事、急いでコード化しましょう!

今日の情報化時代において、個人の身元を正確に識別し、情報セキュリティを保護する方法は、あらゆる分野の...

オーディオ品質評価方法の簡単な分析

パート01 評価方法オーディオ品質の評価に関しては、オーディオの品質を完全に理解するために、主観的評...