AI と ML テクノロジーが人気の話題になると、デジタル トランスフォーメーションの定義とビジネス価値がさらに前進しました。 一般的なデジタル変革プロジェクトでは、数十、あるいは数百もの重要な成果物が生成されることがあります。プロジェクト管理成果物とは異なり、多くの技術的成果物は AI/ML テクノロジーの使用によって改善できます。 ここでは、AI/ML テクノロジーを活用して改善できる主要なデジタル変革プロジェクトの成果物の一部を紹介します。デジタル変革プロジェクトを計画する際には、これらの概念を取り入れることを検討してください。 データ品質の向上デジタル変革イニシアチブの成功は、高品質のデータに大きく依存します。残念ながら、多くのアプリケーション データベースのデータは高品質ではありません。データエラーを手動で分析して修正するのは、コストがかかり、時間がかかり、面倒な作業です。 エンジニアは AI/ML テクノロジーを使用して、エラーを迅速に特定し、非常に高い精度で修正を提案できます。この機能により、作業時間とコストを削減しながらデータ品質を向上させることで、デジタル変革イニシアチブの成功率を高めることができます。 データ品質の向上による利点は次のとおりです。
非構造化データから構造化データへの変換多くの組織のデータは構造化されたデータベースではなく非構造化ドキュメントに保存されているため、デジタル変革プロジェクトから価値を得ることがほとんど妨げられています。 エンジニアは AI/ML テクノロジーを使用して大量の非構造化ドキュメントを迅速に処理し、検索用語とメタデータを見つけて、それを構造化データとして保存できます。業界固有のビジネス ルール ライブラリを初期トレーニング データとして使用して、必要なモデルを開発できます。 この移行の大きな利点は次のとおりです。
ソフトウェア開発の高速化ほぼすべてのデジタル変革プロジェクトには、多くの場合データ統合作業を実行するためのカスタム ソフトウェアの開発が含まれます。 エンジニアは AIGC を使用してソフトウェア コードのドラフトを作成できます。これらのドラフトは、ソフトウェア開発者によって慎重にレビューおよびテストされる必要があります。ただし、AIGC を使用してカスタム ソフトウェアを開発すると、作業負荷が軽減され、コストが削減され、予定より早くタスクを完了できます。 AI/MLテクノロジーを活用して自動アップグレードを実現する多くの企業はすでにビジネスプロセスの少なくとも一部を自動化しており、そのメリットを享受しています。しかし、自動化されたプロセスのほとんどは非常に硬直しており、柔軟性や適応性が欠けています。 AI/ML テクノロジーを使用して自動化プロセスをアップグレードすると、自動化の次の利点が強化されます。
データ分析能力の向上多くの場合、既存のデータ分析機能では十分な価値を提供できないため、企業はデジタル変革プロジェクトに着手します。多くの場合、より大規模なアプリケーションを統合してより多くのデータを利用できるようにすることで、データ分析機能を向上させる機会があります。 エンジニアは AI/ML テクノロジーを使用してデータ分析機能を向上させ、次のようなメリットを得ることができます。
産業用IoTの自動化アップグレード多くの企業が、SCADA システムによって生成された産業用 IoT (IIoT) データを活用するアプリケーションを実装しています。 エンジニアは AI/ML テクノロジーを使用して、次のシステム間でビジネス プロセスをリアルタイムで調整し、全体的な効率を向上させることができます。
利点は次のとおりです。
データ拡張多くの場合、既存の企業データは ML モデルをトレーニングするには不十分です。トレーニング データに十分な多様性がない場合、これらのモデルのパフォーマンスは低下します。データ拡張とは、モデルがより多様なデータを参照して学習できるように、トレーニング データセット内の例の数を増やすプロセスであり、これによりデジタル変革プロジェクトを前進させることができます。 デジタル変革プロジェクトに ML テクノロジー用の高品質なトレーニング データセットの生成が含まれる場合、会社のデータを拡張して新しいデータセットを形成すると、さらなる価値がもたらされます。 サイバーセキュリティ防御デジタル変革プロジェクトでは、サイバーセキュリティを取り組みの範囲外として扱ったり、既存のサイバーセキュリティ防御をうっかり弱体化させたりすることがあります。こうした状況により、企業のサイバーセキュリティリスクが増大します。 代わりに、エンジニアは AI/ML 技術を活用してサイバーセキュリティ防御を強化できます。 AI テクノロジーは、次の方法でサイバーセキュリティ防御を強化できます。
外部データソースの検索多くの場合、企業が外部データソースを内部データソースと統合すると、デジタル変革プロジェクトの価値が高まります。 エンジニアは AIGC を使用して、企業が使用を検討すべき外部の無料、オープン ソース、有料のデータ ソースを特定できます。 AI/ML テクノロジーは、エンジニアがデジタル変革プロジェクトが企業にもたらすビジネス価値を高めるための新たな道を切り開くことができます。 |
>>: 北本重型トラック、易欧、松山湖材料研究所が「易本デュアルカーボン研究所」設立に向けた戦略協力協定を締結
この記事は公式アカウント「Reading the Core」(ID: AI_Discovery)から...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
「インテリジェンス」が本格的に到来!人工知能(AI)は、科学技術革命と産業変革の新たなラウンドにおけ...
テキスト分析は、顧客が話す言語に関係なく、顧客の意見のあらゆる例を発見して注釈を付けることができる強...
「2018年中国人工知能商業上陸研究報告」によると、過去1年間、業界は人工知能に大きな期待を寄せ、...
翻訳者 | 朱 仙中校正 | 梁哲、孫淑娟導入この記事では、機械学習のインフラ、従業員、プロセスを統...
AI リスク管理は、AI 大手企業によって再び議題に挙げられています。ちょうど今、ベンジオ、ヒントン...
現在、AI が業界で重要な役割を果たしているため、ディープラーニングは重要な研究分野として、意味理解...
[[379840]] [51CTO.com クイック翻訳] 求職者や採用担当者は、RPA 面接にどう...
実は、似たような事件は以前にも起きている。江蘇省衛星テレビの番組「The Brain」では、百度脳が...