0コードの微調整大型モデルが人気で、わずか5ステップで、コストは150元と低い

0コードの微調整大型モデルが人気で、わずか5ステップで、コストは150元と低い

0 コードの大規模モデルを20 ドル未満で微調整できますか?

プロセスも非常に簡単で、必要なステップは 5 つだけです

LLaMA、GPT、StableLM などの一般的なオープンソース生成モデルを処理できます。

写真

これは、最新の人気 API プラットフォームであるMonster APIです。

オープンソース分野におけるこの新たな取り組みは、AI開発におけるゲームのルールを書き換え、AIの応用速度を加速させることができると考える人もいます。

写真

中には、GPT-3/GPT-4 に後から接続されるのかと興奮気味に尋ねる人もいました。

写真

それで、それは具体的にどのように達成されるのでしょうか?

コーディングなしで5ステップで完了

簡単に言えば、Monster API は微調整の手順を可能な限り簡素化し、開発者が一連の設定を手動で実行する必要がなくなると同時に、安価な GPU リソースとメモリの最適化も提供します。

具体的なプロセスは以下のとおりです。

最初のステップは、微調整するモデルを選択することです

たとえば、LLaMA-7B、GPT-J-6B、StableLM-7B などです。Monster API は、少なくとも 10 個の基本的な大規模モデルを提供します。

写真

2 番目のステップは、微調整タスクを選択または作成することです。たとえば、指示の微調整、テキスト分類、カスタム タスクなどです。

写真

3 番目のステップは、HuggingFace データセットを選択することです。

Monster API は、幅広いオプションを提供する HuggingFace データセットをシームレスに統合できます。また、タスクの種類に基づいてデータセットを推奨することもできます。

手動で行う必要はなく、フォーマットは自動的に設定されます。

写真

4 番目のステップは、ハイパーパラメータを設定することです。

写真

ステップ 5 : 確認して送信します。

上記の手順をすべて設定したら、エラーがないことを確認し、送信してください。

Monster API は、WandB のログを通じてタスクを監視できることを示します。

彼はブログに、DataBricks Dolly 15k を使用して LLaMA-7B を微調整し、3 つのエポーチを完成させるのにかかる費用は 20 ドル未満 (約 144 人民元) だと書いています。

公式サイトでは、登録後にユーザーに2,500ポイントが付与されると記載されています。メンバーシップは 3 つのレベルに分かれており、それぞれ月額 9 ドル、29 ドル、39 ドルの料金がかかります。

写真

Monster API は、微調整に加えて、生成 AI 用のさまざまな API インターフェースも提供しており、他のソリューションよりもコストが 80% 低いと主張しています。

写真

この会社は110万ドルの資金を調達した。

報道によると、Monster API を開発する会社は、プレシード資金として110 万ドルを調達したとのことです。

この AI スタートアップは、世界中に散在する GPU リソースを柔軟にスケジュールし、開発者がより低価格で利用できるようにすることで、自らを「GPU 分野の Airbnb」と位置づけています。

写真

創設者は Gaurav Vij と Saurabh Vij の 2 人の兄弟です。

Gaurav Vij 氏も CV 会社を設立しました。CV 会社が巨大なクラウド コンピューティング資本に直面する必要があったため、このようなプラットフォームを作成するというアイデアが生まれました。

Saurabh Vij 氏は以前は CERN の素粒子物理学者であり、そこで分散コンピューティングの研究も行っていました。

兄弟は、数回の技術的な反復を経て、機械学習タスクにおけるコンシューマーグレードの GPU のパフォーマンスを最適化し、AWS プラットフォームと比較して Whisper AI モデルの実行コストを 90% 削減できたため、この方法を使って何万人もの開発者を支援してみようと考えたと述べています。

同時に、同社の顧客の1社が分散型GPUコンピューティングリソースを使用することで30万ドルを節約したことも明らかにした。

参考リンク:
[1] https://blog.monsterapi.ai/no-code-fine-tuning-llm/

[2] https://www.enterpriseai.news/2023/06/09/monster-api-launches-the-airbnb-of-gpus-with-1-1m-pre-seed/


<<:  AIによる教育革命:自己主導型およびガイド型適応型学習の包括的分析

>>:  5400億パラメータの大規模モデル進化ツリーが大幅に更新されました!最も詳細なプロンプトスキルを備えた85ページのLLM開発履歴

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

優れたプレーンテキストモデル? GPT-4は準備完了

2020年5月、GPT-3はGPT-2のリリースから1年後に正式にリリースされました。GPT-2も...

マルチモーダル LLM 幻覚問題が 30% 減少しました!業界初の「キツツキ」無重力トレーニング法が誕生

大規模なマルチモーダル モデルの「幻覚」問題を解決するために、まだ命令の微調整を使用していますか?例...

目に見える機械学習: ニューラルネットワークをゼロから理解する

機械学習に関する古いジョークがあります。機械学習は高校のセックスのようなものです。誰もがやっていると...

データ時代の金採掘者になりましょう。Analysysアルゴリズムコンペティションがあなたの実力を披露するのを待っています。

もっと多くのアルゴリズムの才能とつながりたいですか?業界の最先端の技術を知りたいですか?インターネッ...

ランセットの最新記事:主要都市での流行は武漢より1~2週間遅れる

一方で感染症の予防と抑制、他方で春節の旅行ラッシュの帰省があり、今年の仕事再開への道のりは異例のもの...

「MLOps」の考え方を取り入れるためのベストプラクティス

AI プロジェクトを構想から実装に移行することは悪循環ですが、解決策は 1 つしかありません。悪循環...

最新のロボット学習システムが登場、たった1本の動画で仕事内容を学習可能

近い将来、人間はロボットにやり方を一度見せるだけで、タスクの実行方法を教えることができるようになるか...

機械学習で避けるべき3つのよくある間違い

企業は、お金の無駄遣い、アプリケーションのパフォーマンスの低下、成果の得られないという 3 つの間違...

自然言語処理: コンピュータに人間の言語を理解して処理させる

自然言語処理 (NLP) は、人工知能の分野における重要かつ刺激的なテクノロジーです。その目標は、コ...

顔認識は壊れているのでしょうか?心配しないでください。「フェイスプロテクションプラン」が始まります

かつて、顔認識は人々が非常に信頼する技術でした。生産と生活に利便性、効率性、正確性をもたらしたため、...

最高裁:ビジネス施設での顔認識の乱用は侵害である

今年のCCTV 315ガラで、 CCTVは全国20以上の有名店が顔認識カメラを設置し、顧客の顔認識情...

1,000元の予算で半日のトレーニングを実施し、その効果は主流の大型モデル、オープンソース、市販の中国製LLaMA-2に匹敵する。

LLaMA-1 と比較して、LLaMA-2 はより高品質のコーパスを導入し、大幅なパフォーマンスの...

FenyintaのCTO、張明氏:観光産業を深く掘り下げ、AI技術を使って異言語コミュニケーションの問題を解決する

[51CTO.comからのオリジナル記事] 1930年代初頭、フランスの科学者GBアルチュニは翻訳に...