2時間で人間を超えることができます! DeepMind の最新 AI が 26 の Atari ゲームをスピードラン

2時間で人間を超えることができます! DeepMind の最新 AI が 26 の Atari ゲームをスピードラン

DeepMind の AI エージェントが再び自らの力を発揮します。

よく見てください。BBF というこの男は、わずか 2 時間で 26 の Atari ゲームをマスターしました。その効率は人間に匹敵し、すべての先達を上回っています。

ご存知のように、AI エージェントは強化学習を通じて問題を解決するのに常に効果的でしたが、最大の問題は、この方法が非常に非効率的で、探索に長い時間がかかることです。

写真

BBF によってもたらされた画期的な進歩は効率性にあります。

その正式名称が「Bigger, Better, Faster」であるのも不思議ではありません。

さらに、1 枚のカードだけでトレーニングを完了できるため、必要な計算能力が大幅に低くなります。

BBF は Google DeepMind とモントリオール大学が共同で提案したもので、現在はデータとコードの両方がオープンソースになっています。

人間の最大5倍のパフォーマンス

BBF ゲームのパフォーマンスを評価するために使用される数値は IQM と呼ばれます。

IQM は、ゲームパフォーマンスのさまざまな側面を総合的に評価したスコアです。この記事の IQM スコアは、人間のパフォーマンスに基づいて正規化されています。

これまでの複数の結果と比較すると、BBF は 26 個の Atari ゲームを含む Atari 100K テスト データセットで最高の IQM スコアを達成しました。

さらに、BBF がトレーニングされた 26 のゲームでは、そのパフォーマンスは人間のパフォーマンスを上回りました。

同様のパフォーマンスを発揮する Eff.Zero と比較すると、BBF は GPU 時間をほぼ半分しか消費しません。

ただし、同様の GPU 時間を消費する SPR と SR-SPR のパフォーマンスは BBF よりはるかに劣ります。

写真

繰り返しのテストでは、一定の IQM スコアに到達した BBF の割合は高いレベルを維持しました。

全テスト実行の 1/8 以上で、人間の 5 倍のパフォーマンスを達成しました。

写真

BBF は、トレーニングを受けていない他の Atari ゲームでも、人間の半分以上の IQM スコアを達成することができました。

訓練されていない 29 のゲームだけを見ると、BBF のスコアは人間のスコアの 40% から 50% にすぎません。

写真

SR-SPRをベースに改良

BBF 研究を推進する問題は、サンプル サイズが不足している場合に深層強化学習ネットワークをどのように拡張するかということです。

この問題を研究するために、DeepMind は Atari 100K ベンチマークに注目しました。

しかし、DeepMind はすぐに、モデルのサイズを大きくするだけではパフォーマンスが向上しないことを発見しました。

写真

ディープラーニング モデルの設計では、ステップごとの更新回数 (リプレイ率、RR) が重要なパラメーターです。

特に Atari ゲームの場合、RR 値が大きいほど、ゲーム内のモデルのパフォーマンスが高くなります。

最後に、DeepMind は SR-SPR を基本エンジンとして使用し、SR-SPR の RR 値は最大 16 に達します。

総合的に検討した結果、DeepMind は BBF の RR 値として 8 を選択しました。

一部のユーザーは RR=8 の計算コストを支払いたくないと考えていることを考慮して、DeepMind は BBF の RR=2 バージョンも開発しました。

写真

DeepMind は SR-SPR の多くの側面を変更した後、自己教師ありトレーニングを使用して BBF を取得しました。これには主に次の側面が含まれます。

  • 畳み込み層のリセット強度の強化: 畳み込み層のリセット強度を高くすると、ランダムターゲットの摂動振幅が大きくなり、モデルのパフォーマンスが向上し、損失が減ります。BBFのリセット強度を高くすると、摂動振幅はSR-SPRの20%から50%に増加します。
  • ネットワークサイズの拡大:ニューラルネットワークの層数を3から15に増やし、幅を4倍に増やします。
  • 更新範囲の狭め (n): モデルのパフォーマンスを向上させるには、n の値を固定しない値にする必要があります。 BBF は 40,000 勾配ステップごとにリセットされます。各リセットの最初の 10,000 勾配ステップでは、n は 10 から 3 に指数関数的に減少します。減衰フェーズは、BBF トレーニング プロセスの 25% を占めます。
  • より大きな減衰係数(γ):学習プロセス中にγ値を増やすと、モデルのパフォーマンスが向上することがわかっています。BBFのγ値は従来の0.97から0.997に増加しました。
  • 重みの減衰: 過剰適合を避けるため、BBFの減衰は約0.1である。
  • NoisyNetの削除: 元のSR-SPRに含まれていたNoisyNetはモデルのパフォーマンスを向上させません

アブレーション実験の結果、ステップあたりの更新回数が 2 回と 8 回の場合、上記の要因が BBF のパフォーマンスに異なる程度の影響を与えることがわかりました。

写真

その中で、ハードリセットと更新範囲の縮小の影響が最も顕著です。

写真

上記の 2 つの図には記載されていない NoisyNet については、モデルのパフォーマンスへの影響は大きくありません。

写真

論文アドレス: https://arxiv.org/abs/2305.19452GitHub プロジェクトページ: https://github.com/google-research/google-research/tree/master/bigger_better_faster

参考リンク: [1] https://the-decoder.com/deepminds-new-ai-agent-learns-26-games-in-two-hours/

[2] https://www.marktechpost.com/2023/06/12/superhuman-performance-on-the-atari-100k-benchmark-the-power-of-bbf-a-new-value-based-rl-agent-from-google-deepmind-mila-and-universite-de-montreal/

- 以上 -

<<:  5 分間の技術講演 | 顔認識についてどれくらい知っていますか?

>>:  ChatGPTを旅の途中のプロンプトジェネレーターに変える

ブログ    
ブログ    
ブログ    

推薦する

...

...

...

DeepTraffic: MIT シミュレーション ゲームがディープラーニングを使用して交通渋滞を緩和

[[196857]]渋滞に巻き込まれるのはイライラするだけでなく、費用もかかります。頭痛の原因になっ...

...

なぜ機械学習エンジニアになりたいのですか?それは情熱や熱のせいでしょうか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

...

ジャック・マー:テクノロジーは私たちの生活をより健康にしなければ意味がない

9月17日から19日まで、上海で「人工知能が新時代を力づける」をテーマにした2018年世界人工知能大...

...

ロボットは人間の労働に取って代わることができるでしょうか?アディダスは悲惨な教訓を学び、涙ながらにスマート工場を閉鎖した

科学技術は主要な生産力であると言われています。いつの時代になっても、この言葉は決して古くなることはあ...

OpenAIが「Copyright Shield」機能を開始、AI著作権問題の支払いプラットフォーム

IT Homeは11月7日、本日開催されたOpenAI初の開発者会議で、OpenAIが「Copyri...

「無人運転」の技術的道筋

無人運転車が実際に走行するには、認識、意思決定、実行における技術的な問題を解決する必要があります。 ...

...

レノボグループが従業員の払い戻しの内部監査を実施できるようRPAロボットを導入

数万人の従業員を抱える大企業にとって、従業員の払い戻しに関する内部監査の難しさは想像に難くありません...

MonoLSS: 視覚的な 3D 検出トレーニングのためのサンプル選択

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...