ガートナーは、中国企業が平均5つ以上のAIユースケースを展開しているというレポートを発表した。

ガートナーは、中国企業が平均5つ以上のAIユースケースを展開しているというレポートを発表した。

最近、ガートナーは中国企業が人工知能プロジェクトをプロトタイプから生産へと移行していることを示す最新の調査結果を発表しました。ほとんどの企業はもはや AI 機能が必要な理由について懸念しておらず、データに基づく意思決定によって継続的にビジネスに価値を生み出すことを目標に、AI エンジニアリング機能の構築に重点を置いています。中国の大手 AI 企業の中には、生成 AI やその他の新しい AI テクノロジーをさまざまなシナリオに適用して、ネイティブ AI 企業を構築しているところもあります。

CIO は一般的に AI がビジネスに大きな価値をもたらすと考えていますが、取締役は AI に懐疑的であり、実際の効果は期待に応えられていません。しかし、ChatGPT の立ち上げにより、取締役や企業幹部は初めて生成 AI の大きな可能性に気付き、生成 AI がビジネスに変革と大きな価値をもたらすことができると信じるようになりました。これにより、生成 AI への投資機会を逃すのではないかと心配する CIO に不安とプレッシャーが生じます。

ガートナーは、企業の最高情報責任者 (CIO) が AI 機能をより適切に計画し、ビジネス成果を向上できるようにすることを目的として、「中国企業人工知能トレンド ウェーブ 3.0」を発表しました。

現在、中国企業は平均5件以上のAIユースケースを展開しており、各企業は平均24件のAIユースケースの展開を開始しています。多くのビジネスユーザーや企業幹部は、AI はプラグインをインストールするだけの簡単さだと考えていますが、実際には、運用 AI には、データ処理、ビジネス指標の結合、データ統合、ビジネス統合、継続的な監視と最適化など、複数のリンクが含まれており、エンドツーエンドの AI ユースケースとプロセスを包括的に考慮する必要があります。

中国企業のうち、ビジネスニーズに完全に対応できるAIを備えているのは5社に1社だけです。そのため、ますます多くの大手企業がAIを単一のプロジェクト投資として捉えるのではなく、製品運用やポートフォリオ運用を通じてエンドツーエンドのビジネス成果重視の視点でAI全体を運用し、ライフサイクル全体を通じてビジネス効果を生み出し続けることができるようになっています。

一部の企業にとって、プロセス、アルゴリズム、システムにおけるグローバルなイノベーションは、より価値のあるアプリケーションをもたらす可能性がありますが、より大きなリスクも伴います。中国企業を対象とした最新の調査では、75%の企業が、生成型AIの将来的な能力はそれがもたらすリスクを上回る可能性があると考えている。現時点では企業はリスクに対する認識が低いですが、ひとたびリスクが発生すると、企業にとって多大な信用失墜や顧客喪失を招く可能性があります。

生成 AI を適用する場合、企業はリスクを回避する傾向があり、深刻な結果や潜在的な論争を引き起こすことなく AI テクノロジを使用します。この慎重な姿勢は合理的ですが、潜在的なビジネスチャンスを逃すことにもつながる可能性があります。したがって、企業はビジネス価値の実現とリスク管理のバランスを取る必要があります。

AI アプリケーションの信頼性と説明可能性を確保するために、企業は透明性と説明可能性のアプローチを採用し、AI 意思決定プロセスの透明性を確保し、AI の決定を説明および擁護する機能を提供する必要があります。生成 AI を適用する場合、企業は関連する倫理的、法的、社会的問題を慎重に評価し、関連する規制や倫理基準に準拠していることを確認する必要があります。明確な規制とガバナンスの枠組みを確立することで、企業はイノベーションとリスクのバランスを取りながら AI のビジネス上の可能性を実現できます。

リスクと価値を明確にした上で、AIを戦略的に導入するために人材をどのように選抜し、組織体制を調整するかについても考える必要があります。中国企業がAIを導入する際、半数以上の企業が人材が最大の課題であると考えています。対照的に、海外の企業ではAI人材が最大の課題であると考えている企業は30%未満です。これは、組織によって人材や組織関係に対する要件が異なるためと考えられます。先進的な組織は、さまざまなビジネス理解、IT スキル、データ サイエンス スキルを統合して、AI をより完全、包括的、かつ効果的に実装できることがよくあります。

<<:  経路計画における DRL と OR アルゴリズム: 比較と展望

>>:  「科学的シミュラクル」:人工知能とハイパーリアリティの衝突

ブログ    
ブログ    

推薦する

多くのライターがChatGPTを著作権侵害で非難した。OpenAI: 著作権の範囲を誤解している

8月31日、OpenAIは今週、原告に数人の作家を含むほぼ同一の集団訴訟2件に応じた。彼らは、Cha...

...

将来の知能社会に向けた人工知能の基礎教育の強化

人工知能の基礎教育を強化することは、将来の社会の発展に備えるための避けられない選択であり、要件です。...

AIがシュレーディンガー方程式を正確かつ計算効率よく解く、Nature Chemistry誌に発表

量子力学の基本方程式の一つとして、シュレーディンガー方程式は常に幅広い注目を集めてきました。昨年、D...

人材獲得におけるAIの台頭

[[405721]]過去 10 年間で採用手法が進化するにつれ、人材獲得における人工知能の活用がます...

AIが高性能鋼材の設計を支援:破壊強度と破壊寿命を正確に予測

機械学習技術は、ヘルスケアから高エネルギー物理学に至るまでのさまざまな分野の進歩を推進しています。現...

2023年版CV初心者ガイドの概要

コンピューター ビジョンは、驚くほど急速に発展している分野です。本質的には、コンピューターに人間と同...

機械学習における次元削減とは何ですか?

【51CTO.com クイック翻訳】機械学習アルゴリズムは、数十行の表や数百万ピクセルの画像など、...

...

Ruijie NetworksとMidea Smartは戦略的提携を結び、スマート小売端末の商業化と普及に取り組んでいます。

6月30日、瑞傑ネットワークス株式会社(以下、瑞傑ネットワークス)と合肥美的智能科技有限公司(以下...

アクセンチュアは、ジェネレーティブAIがビジネスにとって重要な破壊的要因であると強調

アクセンチュアがダボスで開催される世界経済フォーラム年次総会に先立ち発表した「2024 Pulse ...

航空会社が AI を活用して乗客体験を向上させる方法

「おはようございます、ジョーンズさん。ロンドン・ガトウィック空港からパリへの『ニューノーマル』フライ...

量子コンピューティングはどのようにして AI の「兄弟技術」になるのでしょうか?

[[254920]]画像出典: Visual China過ぎ去ったばかりの 2018 年を振り返っ...

エンタープライズ電気システムにおける機械学習の 5 つのメリット

機械学習技術は企業の電気システムの作業と保守において重要な役割を果たしており、人々は機械学習を採用す...

ByteDance の新しい具現化された知能の成果: 大規模なビデオデータでトレーニングされた GR-1 は、複雑なタスクを簡単に処理します

最近、GPT モデルは NLP の分野で大きな成功を収めています。 GPT モデルは、まず大規模なデ...