ガートナーは、中国企業が平均5つ以上のAIユースケースを展開しているというレポートを発表した。

ガートナーは、中国企業が平均5つ以上のAIユースケースを展開しているというレポートを発表した。

最近、ガートナーは中国企業が人工知能プロジェクトをプロトタイプから生産へと移行していることを示す最新の調査結果を発表しました。ほとんどの企業はもはや AI 機能が必要な理由について懸念しておらず、データに基づく意思決定によって継続的にビジネスに価値を生み出すことを目標に、AI エンジニアリング機能の構築に重点を置いています。中国の大手 AI 企業の中には、生成 AI やその他の新しい AI テクノロジーをさまざまなシナリオに適用して、ネイティブ AI 企業を構築しているところもあります。

CIO は一般的に AI がビジネスに大きな価値をもたらすと考えていますが、取締役は AI に懐疑的であり、実際の効果は期待に応えられていません。しかし、ChatGPT の立ち上げにより、取締役や企業幹部は初めて生成 AI の大きな可能性に気付き、生成 AI がビジネスに変革と大きな価値をもたらすことができると信じるようになりました。これにより、生成 AI への投資機会を逃すのではないかと心配する CIO に不安とプレッシャーが生じます。

ガートナーは、企業の最高情報責任者 (CIO) が AI 機能をより適切に計画し、ビジネス成果を向上できるようにすることを目的として、「中国企業人工知能トレンド ウェーブ 3.0」を発表しました。

現在、中国企業は平均5件以上のAIユースケースを展開しており、各企業は平均24件のAIユースケースの展開を開始しています。多くのビジネスユーザーや企業幹部は、AI はプラグインをインストールするだけの簡単さだと考えていますが、実際には、運用 AI には、データ処理、ビジネス指標の結合、データ統合、ビジネス統合、継続的な監視と最適化など、複数のリンクが含まれており、エンドツーエンドの AI ユースケースとプロセスを包括的に考慮する必要があります。

中国企業のうち、ビジネスニーズに完全に対応できるAIを備えているのは5社に1社だけです。そのため、ますます多くの大手企業がAIを単一のプロジェクト投資として捉えるのではなく、製品運用やポートフォリオ運用を通じてエンドツーエンドのビジネス成果重視の視点でAI全体を運用し、ライフサイクル全体を通じてビジネス効果を生み出し続けることができるようになっています。

一部の企業にとって、プロセス、アルゴリズム、システムにおけるグローバルなイノベーションは、より価値のあるアプリケーションをもたらす可能性がありますが、より大きなリスクも伴います。中国企業を対象とした最新の調査では、75%の企業が、生成型AIの将来的な能力はそれがもたらすリスクを上回る可能性があると考えている。現時点では企業はリスクに対する認識が低いですが、ひとたびリスクが発生すると、企業にとって多大な信用失墜や顧客喪失を招く可能性があります。

生成 AI を適用する場合、企業はリスクを回避する傾向があり、深刻な結果や潜在的な論争を引き起こすことなく AI テクノロジを使用します。この慎重な姿勢は合理的ですが、潜在的なビジネスチャンスを逃すことにもつながる可能性があります。したがって、企業はビジネス価値の実現とリスク管理のバランスを取る必要があります。

AI アプリケーションの信頼性と説明可能性を確保するために、企業は透明性と説明可能性のアプローチを採用し、AI 意思決定プロセスの透明性を確保し、AI の決定を説明および擁護する機能を提供する必要があります。生成 AI を適用する場合、企業は関連する倫理的、法的、社会的問題を慎重に評価し、関連する規制や倫理基準に準拠していることを確認する必要があります。明確な規制とガバナンスの枠組みを確立することで、企業はイノベーションとリスクのバランスを取りながら AI のビジネス上の可能性を実現できます。

リスクと価値を明確にした上で、AIを戦略的に導入するために人材をどのように選抜し、組織体制を調整するかについても考える必要があります。中国企業がAIを導入する際、半数以上の企業が人材が最大の課題であると考えています。対照的に、海外の企業ではAI人材が最大の課題であると考えている企業は30%未満です。これは、組織によって人材や組織関係に対する要件が異なるためと考えられます。先進的な組織は、さまざまなビジネス理解、IT スキル、データ サイエンス スキルを統合して、AI をより完全、包括的、かつ効果的に実装できることがよくあります。

<<:  経路計画における DRL と OR アルゴリズム: 比較と展望

>>:  「科学的シミュラクル」:人工知能とハイパーリアリティの衝突

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

大規模機械学習のためのプログラミング手法、計算モデル、Xgboost および MXNet の事例

[[191977]]現在、機械学習のトレンドは、従来の方法のシンプルなモデル + 少量データ (手動...

Baidu がカスタマイズされたトレーニングおよびサービス プラットフォーム EasyDL を全面公開: 誰もが AI を使えるように

百度は昨年7月にAIプラットフォームをオープンして以来、開発者にAIオープンテクノロジーの能力を継続...

...

深層強化学習の謎を解く

【51CTO.com クイック翻訳】 深層強化学習は、人工知能の最も興味深い分野の 1 つです。ボー...

5G の商用化が加速しています。これはドローンにとって何を意味するのでしょうか?

今年に入ってから、わが国の5G開発は加速しており、各地の5G建設は設定された目標を完了し、5G商用化...

神よ、AIロボットは人間よりも優れた政治家になれると信じますか?

[[186489]]昨年、アルファ碁がイ・セドルに勝利して以来、人工知能は国民の間で話題となってい...

ザッカーバーグ氏がCharacter.AIの1:1レプリカである仮想チャットAIをリリース?ユーザーの不満: 設定が古すぎる

ユーザーがTikTokにどんどん奪われ、毎日のアクティブユーザー数が減り続けているという現実に直面し...

人工知能を活用して会社のウェブサイトをより良く作成する方法

ここでは、テクノロジーの進歩に合わせて AI を使用して、より発展し、より強力になる Web サイト...

世界を席巻しているトップ10のプログラミングアルゴリズムを鑑賞しましょう

[[121078]]アルゴリズムは今日の私たちの生活にとって非常に重要なので、いくら強調してもし過ぎ...

4 つの主要ビジネス分野における業界に関するインテルの詳細な洞察、アプリケーション事例、革新的な製品とソリューションの解釈 | Intel Vision

ポストパンデミックの時代において、在宅勤務によって従業員の生産性を最大限に引き出すにはどうすればいい...

人工知能の開発を加速するための9つのヒント

現在、多くの企業が AI テクノロジーで一定の成功を収めており、IT チームは AI プロジェクトを...

ディープフェイクで映画を作る時代が来た:ディズニーが高解像度の顔を変えるアルゴリズムを公開

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...