Kaggle機械学習モデル融合(スタッキング)体験

Kaggle機械学習モデル融合(スタッキング)体験

[[205595]]

この記事では、エントリーレベルのスタッキング アプリケーションを学習する私の精神的な旅について説明します。

学習プロセス中、モデル融合手法と、Kaggle での最初のバトルで上位 10% に入る方法に関する記事 (著者は Zhang Linghao) を提供してくれた @貝塔に感謝したいと思います。情報を提供していただいたお二人に心から感謝いたします。 Kaggle には、このようなアンサンブルに関する記事やコードもいくつかあります。

この記事は、スタッキングに悩まされている初心者向けです。インターネット上のスタッキングに関するコンテンツは数少ないですが、上記の役立​​つ記事はすでにお読みいただいているものと想定しています。しかし、見終わった後もショックを受けました。以下の内容が、スタッキングを学ぶという困難な道のりにおいて、皆さんにとって小さなたいまつとなり、かすかな光を与えてくれることを願っています。

この記事では、Kaggle の Titanic (Titanic Prediction) 入門コンペティションを使用して、スタッキング (2 層!) の応用について説明します。

データの行数: train.csv には 890 行 (つまり 890 人)、test.csv には 418 行 (418 人) があります。

データ列の数は、保持する特徴の数によって決まりますが、これは人によって異なります。自分の列車は7+1を保持します(1は予測列です)。

インターネット上の数少ないスタッキングコンテンツの中で、この画像をすでにご覧になったことがあると思います。

この絵をすぐに理解できれば大丈夫です。

すぐに理解できないと困ってしまいます。その後もしばらくは混乱が続きます…

この写真は***「誤解を招く」からです。 (注: この画像が間違っているとは言っていませんが、確かに間違っています!!! しかし、インターネット上の数少ないチュートリアルの 1 つに無修正の画像があるのは良いことです。感謝してください、私は弱虫です)。

写真を修正しました:

5 倍のラウンドごとに、モデル 1 は 5 ラウンドのトレーニングと予測を実行する必要があります。

タイタニックの例:

トレーニング データには 890 行あります。 (写真上部に対応しております)

各フォールドでは、713 行の小さなトレインと 178 行の小さなテストが生成されます。モデル 1 を使用して、713 行の小さなトレインをトレーニングし、次に 178 行の小さなテストを予測します。予測結果は、長さ 178 の予測値です。

このアクションは 5 回実行されます。長さ 178 X 5 = 890 の予測値となり、これはトレーニング データの長さとちょうど一致します。この 890 予測値はモデル 1 によって生成されます。これは後で第 2 層モデルのトレーニング ソースとなるため、最初に保存します。

重要なポイント: このステップで生成された予測値は、890 X 1 (890 行、1 列) に変換でき、P1 (大文字の P) と表記されます。

次に、テスト データに 418 行あるとします。 (写真の下部、はいはい、緑のボックスに対応してください)

各フォールドについて、713 行の小規模なトレーニングでトレーニングされたモデル 1 は、すべてのテスト データを予測する必要があります (すべてです。テスト データは 5 フォールドに含まれていないため、毎回すべてです)。このとき、モデル1の予測結果は長さ418の予測値となります。

これを 5 回繰り返します。5 x 418 の予測値マトリックスが得られます。次に、行を平均して 1 x 418 の平均予測を取得します。

重要なポイント: このステップで生成された予測値は、418 X 1 (418 行、1 列) に変換でき、p1 (小文字の p) と表記されます。

この時点で、最上位モデル 1 のミッションは完了です。

*** 層にはモデル 2 などの他のモデルがあります。同じプロセスを実行すると、890 X 1 (P2) 列と 418 X 1 (p2) 列の予測値を取得できます。

したがって、最初のレベルに 3 つのモデルがあるとすると、次のようになります。

5 分割からの予測行列は 890 X 3、(P1、P2、P3) であり、テスト データからの予測行列は 418 X 3、(p1、p2、p3) です。

———————————————–

2階に到着………………

5分割からの予測値行列890×3は、第2層モデルをトレーニングするためのトレーニングデータとして使用されます。

テスト データ 418 X 3 からの予測値のマトリックスがテスト データです。トレーニング済みモデルを使用して、これらを予測します。

—————————————

***、ここに Python コードがあります。インターネット上のいくつかのスタック コンテンツの中で、これらの数行のコードは既に見たことがあるでしょう。私は以前ここで行き詰まっていました。ここで少し注釈を追加します。お役に立てば幸いです。

<<:  アディダスのロボット工場で作られた靴が出荷されようとしている

>>:  ニューラルネットワークの問題を解決するための新しいアイデア: OpenAI は線形ネットワークを使用して非線形問題を計算します

推薦する

調査によると、AIツールは企業の従業員が年間約400時間を節約するのに役立つことがわかった

7月10日、人材分析・計画会社Visierは、英国、米国、カナダ、ドイツの250社以上の企業の従業員...

2021 年の人工知能の最新動向を示す 15 のグラフ

2021年AIインデックスレポートは、スタンフォード大学の人間中心AI研究所と、ハーバード大学、経済...

3,000以上のデータから200を選択する方が実際にはより効果的であり、MiniGPT-4は同じ構成のモデルよりも優れている。

GPT-4 は、詳細かつ正確な画像の説明を生成する強力で並外れた能力を実証しており、言語と視覚処理...

Google 創設者が正式に LLM 戦争に復帰!ジェミニの開発を導く、OpenAIとMetaとの戦いが迫る

4年前に辞任したGoogleの共同創設者がついに復帰!ウォール・ストリート・ジャーナルの報道によると...

国連がAI報告書を発表:自動化とAIはアジアに大きな影響を与える

[[245530]]科学技術の急速な発展は、社会の変化に大きな影響を与えます。第四次産業革命は、人工...

...

...

...

ドローンの耐久性の低さの問題を軽減するために、一般の人がこれを行うことができます

[[396949]]近年、新世代の通信およびナビゲーション技術の継続的な進歩を背景に、我が国のドロー...

データマイニングアルゴリズムと実際の応用例

[[149735]]武漢に比べると北京の秋の訪れはとても早く、9月の夕方には少し肌寒さを感じるように...

AIツールはリモートワーク中のチームの生産性向上に役立ちます

[[385429]]人工知能は、自宅からリモートで仕事をしながら生産性を維持したい労働者にとって重要...

MetaのAIディレクターは、AIスーパーインテリジェンスがすぐに実現するとは考えておらず、量子コンピューティングにも懐疑的だ。

メタの主任科学者であり、ディープラーニングの先駆者であるヤン・ルカン氏は、現在のAIシステムが、山の...

LSTMとトランスフォーマーの利点を組み合わせることで、DeepMindの強化学習エージェントはデータ効率を向上させます

[[423163]]近年、マルチエージェント強化学習は飛躍的な進歩を遂げています。例えば、Deep...