太陽光発電や風力発電に AI はメリットをもたらすのでしょうか?

太陽光発電や風力発電に AI はメリットをもたらすのでしょうか?

太陽光発電と風力発電は急成長しているが、世界の再生可能電力への移行は、気候目標を迅速に達成するにはまだ遅すぎる。地球規模で風力と太陽光発電を活用することは、さまざまな理由から、言うほど簡単ではありません。 1 つは、風力タービンと太陽光パネルは複雑で扱いにくい工学システムであり、故障しやすいということです。頻繁に故障すると発電量が減少し、風力発電所や太陽光発電所の運営と維持にコストがかかります。

イギリスのハル大学のデータ科学者ジョイジット・チャタジー氏は、AIを使って発電量や部品の故障を予測できれば、再生可能電力をより手頃で信頼できるものにして、普及を加速できると述べた。しかし、電子商取引、製造、医療など他の多くの分野とは異なり、この分野では適用されていません。 「AIは気候変動と持続可能性に本当の影響を与える可能性がある」と彼は言う。「しかし、再生可能エネルギー分野ではAIに関連する仕事はほとんどない。」

そこでチャタジー氏とハル大学のコンピューターサイエンス研究ディレクターの同僚ニーナ・デスレフス氏は、最近のAIカンファレンスである国際学習表現会議(ICLR)にAIと再生可能エネルギーの専門家を集めました。 6月10日にデータサイエンスジャーナル「パターン」に掲載された展望論文の中で、2人は会議の重要なメッセージを提示し、再生可能エネルギーに対するAIの影響を制限する障壁と、確立されたAI手法と新興のAI手法を使用してこれらの障壁を克服する方法を概説しています。

実用規模の農場の風力タービンと太陽光パネルには、オペレーターが遠隔で発電量と状態を監視できるセンサーが装備されています。これらのセンサーには、振動センサー、温度センサー、加速度計、速度センサーが含まれます。彼らが生成するデータはチャンスをもたらします。過去の発電量と障害データに基づいてトレーニングされた AI モデルは、風力タービンのギアボックスや太陽光パネルのインバーターの予期しない障害を予測できるため、オペレーターは停電に備え、定期的なメンテナンスを計画できます。

強化学習は、これらのモデルの改善に役立つ、刺激的な新しい機械学習技術だとチャタジー氏は語った。強化学習では、アルゴリズムはトレーニング中に世界と対話し、決定に対する継続的なフィードバックを得て、報酬を与えるか罰を与えるかして、何らかの目標を達成する方法を学習します。この本物のやりとりは人間から生まれます。

「AIの危険性の1つは、完璧ではないことです」とチャタジー氏は言う。「時間の経過とともにAIモデルの最適化に協力するために、人間を関与させることができます。AIが人間の部分を置き換えて意思決定を行うのではないかと心配する人は多いです。しかし、意思決定をサポートするために、人間はAIモデルと協力し、共同でモデルを最適化する必要があります。」

同氏は、自然言語生成(データを人間が読めるテキストに変換するプロセス)に重点を置くことで、AIへの信頼が高まり、AIの利用が増えるだろうと付け加えた。業界のエンジニアは、この透明性の欠如のため、研究者が作成したいくつかの障害予測モデルの使用を躊躇しています。オペレーターに簡潔な自然言語メッセージを提供すると、対話が容易になります。

AI コミュニティにとって、より優れたモデルを作成する上での大きな障壁は、風力および太陽光産業の商業的機密性を考慮すると、公開されているデータの量が限られていることです。業界がデータをオープンに共有することに消極的であることに加え、標準の欠如もAIモデルの開発に影響を与えているとチャタジー氏は述べた。 「世界各地の風力発電所運営者はそれぞれ異なる方法でデータを管理しているため、研究者がリソースを共同で使用するのは非常に困難です。」

この問題に対処するために、AI コミュニティは転移学習と呼ばれる機械学習技術を活用することができます。このアプローチでは、データ内のさまざまな特徴に隠れたパターンを識別することにより、データ サイエンティストが 1 つの機械学習タスクの解決から得た知識を別の関連タスクに転送できるようになり、データが限られている場合でもニューラル ネットワークのトレーニングやディープラーニング モデルの開発が容易になります。 「これにより、過去のデータがなくても、タービンXのモデルだけに基づいてタービンYのモデルを開発できるようになります」とチャタジー氏は語った。

ただし、ニューラル ネットワークが常に答えになるとは限りません。これらのディープラーニング モデルは、従来から画像やテキストからの学習に適しているため、人気が高まっています。問題は、ニューラル ネットワークが頻繁に失敗するということです。さらに、これらの大規模で計算が複雑なモデルをトレーニングするには、エネルギーを大量に消費する高性能コンピューティング インフラストラクチャが必要ですが、開発途上国ではアクセスが困難です。

少なくとも再生可能エネルギー分野に関しては、物事をシンプルにしておくことが問題ない場合もあります。 AI コミュニティはまず、決定木などのより単純な機械学習モデルを使用して、それが機能するかどうかを確かめることに重点を置くべきです。 「一般的に、すべての問題にニューラル ネットワークが必要なわけではありません」とチャタジー氏は言う。「計算が複雑なニューラル ネットワークをトレーニングして開発することで、なぜ炭素排出量を増やすのでしょうか。今後は、リソース集約型および炭素集約型の少ないモデルについて研究する必要があります。」

<<:  オープンソース!香港中文大学、MIT、復旦大学が初のRNA基礎モデルを提案

>>:  デジタル時代のパフォーマンス管理:現実と未来

ブログ    
ブログ    

推薦する

Googleは「ロボット工学の3原則」をシステムに導入:ロボットが人間に危害を加えることを厳しく防止

1月5日、有名なSF作家アイザック・アシモフが「ロボット工学三原則」を提唱しました。 Googleは...

大量ユーザーポイントのランキングアルゴリズムに関する議論

質問多数のユーザーがいるウェブサイトでは、ユーザーにポイントがあり、使用中にいつでも更新される可能性...

AIは英語のエッセイを添削できますか? IELTS、CET-4、CET-6の採点、コメント、エラー修正が必要です

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

問題点を突き止める - Weiang 入札および評価ビデオインテリジェントアーカイブシステム

財務省令第87号では、購入者または購入代理店は入札および入札評価プロセス全体を録画および記録しなけれ...

これらのブラウザのAI拡張機能は素晴らしい

ご存知のとおり、拡張機能を追加することによってのみ、ブラウザは最大限の可能性を発揮し、効率を 2 倍...

自然言語処理の実践: 機械学習によく使われるツールとテクニック

多くの自然言語処理には機械学習が関係しているため、機械学習の基本的なツールとテクニックを理解しておく...

...

マイクロソフト、NvidiaとIntelに対抗する2つのカスタムAIチップをリリース

マイクロソフトは最近、シアトルで開催されたIgniteカンファレンスで2つのAIチップをリリースした...

あなたの AI は規制に対応できる準備ができていますか?

現在、人工知能 (AI) に関する同様の規制が世界中の複数の地域で施行され始めており、GDPR に関...

...

開発者の能力を最大限に引き出すAISpeech DUIオープンプラットフォームがリリースされました

[51CTO.comからのオリジナル記事] Tmall Genie X1、Xiaomi AIスピーカ...

AIがタンパク質構造を予測し、サイエンス誌とネイチャー誌の年間技術革新として掲載され、無限の可能性を秘めている

2021 年に AI 分野で最も画期的な賞を授与するとしたら、誰を選びますか? 「サイエンス」と「ネ...

機械学習アルゴリズムのコレクション: ベイズ学習からディープラーニングまで、それぞれの長所と短所

私たちが日常生活で使用する推奨システム、インテリジェントな画像美化アプリケーション、チャットボットな...

AI人材の確保をめぐる秘密の戦い:中国が勝利する可能性は?

[[251811]]画像ソース @Visual China人工知能の概念は、提唱されてから60年以...

監督が消えた! Midjourney+Miaoyaカメラ+Gen2の新ゲームプレイ:10元でMuskユニバースを作成し、ワンクリックでビデオを作成します

生成 AI の爆発的な増加により、無限の可能性がもたらされました。最近、国内ではミャオヤカメラがイン...