フェイフェイ・リーのチームはロボットにViTを使用し、計画と推論を512倍高速化し、またヘ・カイミンのMAEをキューイングした。

フェイフェイ・リーのチームはロボットにViTを使用し、計画と推論を512倍高速化し、またヘ・カイミンのMAEをキューイングした。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

人間の予知能力+ViTを組み合わせるとどんな化学反応が起こるのか?

ロボットの行動計画能力が高速かつ正確になります。

これは、Fei-Fei Li 氏のチームであるMaskViTの最新の研究であり、MVM とマスク ビジョン モデリングを通じて Transformer を事前トレーニングし、ビデオ予測モデルを確立します。

結果は、MaskViT が 256×256 のビデオを生成できるだけでなく、ロボットの行動計画の推論速度を最大 512 倍向上できることを示しました。

これはどのような研究ですか?

人間からインスピレーションを得る

神経科学の分野での研究によると、人間の認知能力と知覚能力は予測メカニズムによって支えられていることが分かっています。

この世界の予測モデルは、さまざまな可能なアクションをシミュレート、評価、および選択するために使用できます。

人間の場合、このプロセスは高速かつ正確です。

ロボットに同様の予測能力を与えることができれば。そうすれば、複雑で動的な環境でさまざまなタスクを迅速に計画し、実行できるようになります。

たとえば、視覚モデルによる予測制御は 1 つの方法ですが、計算能力と精度に対する要求も高くなります。

そこで、Fei-Fei Li 氏のチームは、最近多くの進歩を遂げた ViT アーキテクチャと、Kaiming He 氏の MAE に代表される MVM とマスク視覚モデリングに基づく自己教師あり事前トレーニング済み表現について考えました。

しかし、それを実装するにはまだ多くの技術的な課題が残っています。

一方、グローバル アテンション メカニズムの複雑さは入力シーケンスの長さの 2 乗に比例するため、ビデオ処理コストが高くなりすぎます。

一方、ビデオ予測タスクと自己回帰マスクビジョンの事前トレーニングの間には矛盾があります。実際のテストでは、モデルは将来のフレーム シーケンス全体を最初から予測する必要があり、その結果、ビデオ予測の品質が低下します。

このような背景を踏まえ、Fei-Fei Li 氏のチームは、マスクビジョンモデリングを通じて Transformer を事前トレーニングし、ビデオ予測モデルを確立するMaskViTを提案しました。

具体的な設計上の決定は 2 つあります。

まず、記憶力とトレーニング効率を向上させるために、空間的注意と時空間的注意という2種類のウィンドウ注意が使用されます。

第二に、マスクされたトークンの比率はトレーニング中に変化します。

推論フェーズでは、マスク スケジューリング機能に従ってマスク レートが徐々に削減される反復的な改良によってビデオが生成されます。

実験結果

研究チームは、3つの異なるデータセットと4つの異なる指標でMaskViTを評価しました。

結果は、MaskViT が以前の高度な方法よりも優れたパフォーマンスを発揮し、最大 256 × 256 の解像度のビデオを生成できることを示しています。

BAIR ではアブレーション実験も実施されました。

その後、チームは実際のロボットでリアルタイム計画に MaskViT を使用した場合の効果を実証しました。

推論速度を最大512倍まで向上できます。

研究者らは、この研究は、最小限のドメイン知識でマスクされた視覚モデリングの一般的なフレームワークを使用して、画像エージェントに強力な予測モデルを付与することが可能であることを示していると述べています。

しかし同時に、一定の制限もあります。

たとえば、特に RoboNet などの静的な背景を持つビデオでは、各フレームを量子化するときにちらつきアーティファクトが表示される場合があります。

ビデオ予測のスケールアップは、特にカメラの動きが多いシーンでは依然として困難です。

将来的には、このビデオ予測方法をより複雑な計画アルゴリズムに統合することを検討する予定です。

今年 5 月に、He Kaiming 氏のチームが MAE のビデオ バージョンを提案し、最適なマスキング率が 90% にも達することを発見したことは特筆に値します。

論文リンク:
https://arxiv.org/abs/2206.11894

プロジェクトリンク:
https://maskedvit.github.io/

何開明氏の論文:
https://arxiv.org/abs/2205.09113

<<:  Cerebras が 1 台のマシンで 200 億のパラメータ モデルをトレーニングするという新記録を樹立

>>:  ファーウェイ、AI人材育成と科学研究の革新を促進する2つのAscendプロジェクトを開始

ブログ    

推薦する

...

デジタル企業におけるロボティック・プロセス・オートメーション(RPA)技術の長所と短所

[[388106]]ロボティック プロセス オートメーション (RPA) テクノロジーは、一部の企業...

AIGC時代のビデオ普及モデル、復旦チームらが分野初のレビューを発表

AI 生成コンテンツは、現在の人工知能分野で最もホットなトピックの 1 つとなっており、この分野の最...

プログラマーがアルゴリズムを本当に習得したら、どれほど強くなるでしょうか?

2020 = 1024 + 996... 2020 はプログラマーにとってあまり「フレンドリー」に...

Huang が H100 を「ブースト」: NVIDIA が大規模モデル アクセラレーション パッケージを発表、Llama2 推論速度が 2 倍に

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

...

テンセント・ロボティクス・ラボの第一人者が起業、ヒューマノイドロボット業界に新たな重鎮が加わる

テンセントのRobticsXロボティクス研究所の第一社員が始めたバイオニックロボットプロジェクトがつ...

AI を使って AI を修正しますか?これらの検出ツールを理解する

生成型AI作成ロボットの登場以来、各界はロボットを使って記事や学術論文を書くようになりました。この状...

人工知能を活用してより質の高い雇用を実現

科学技術の発展に伴い、人工知能によって引き起こされた新たな科学技術と産業革命は、わが国の雇用に持続的...

産業オペレーションの深化が人工知能コンピューティングセンター構築の鍵

新たな科学技術革命と産業革命の到来とともに、デジタル経済は第四次産業革命の重要な礎となり、新たな組織...

科学者はAIを使って人気曲を97%の精度で識別する

6月21日のニュースによると、新たな研究により、人工知能(AI)は人気曲を正確に識別できることが示さ...

APP はユーザーのプライバシーと顔認識生体認証情報を深く掘り下げ、「データ疫病」の到来に注意

315 Gala で摘発された企業は、業界内ではほんの少数派です。ユーザーのプライバシーを侵害するア...