産業用ロボットの限界

産業用ロボットの限界

今日、産業用ロボットはほぼすべての産業で使用されています。これらは製造施設に数多くのメリットをもたらし、将来のスマート工場への道を開きます。ただし、ロボット機器を選択する際にメーカーが考慮すべき制限がいくつかあります。

フォーチュン・ビジネス・インサイトによると、自動化プロセスの需要は増加しており、産業用ロボット市場は2028年に313億ドルに達すると予想されています。製造業者は、ロボットを導入することで得られる潜在的なビジネスおよび生産上のメリットをますます認識するようになっています。しかし、産業用ロボットには欠点がないわけではありません。ここでは、最も一般的な制限事項と、それを克服するためのメーカーからの提案をいくつか紹介します。

手頃な価格

一般的に、産業用ロボットには、追加の設置および構成コストを含む多額の先行投資が必要です。メーカーは、将来のメンテナンスコストや追加コンポーネントの必要性も考慮する必要があります。

同様に、ロボット工学は進化を続ける産業であり、アップグレードされた機械が常に市場に登場しています。定期的に新しいロボットに投資することは、一部の企業、特に業界のトレンドに追いつこうとするだけで倒産するリスクがある小規模企業にとっては困難な作業となる可能性があります。

しかし、産業用ロボットは製造業者がさまざまな分野でコストを削減するのに役立ちます。作業を最適化することで生産コストを削減し、利益を増やすことができます。明確な投資戦略と財務計画があれば、ロボットはより早く投資収益をもたらす可能性が高くなります。

もう一つの賢い選択肢は、再生されたロボットに投資することです。通常、中古ロボットは、効率性と操作性を維持しながら、新品のロボットの半分の価格で購入できます。

安全性

工場では、産業用ロボットは常に危険だと考えられています。そして、それには十分な理由があります。それらは、非常に高速で移動できる大型でかさばるデバイスだからです。古い機械には近くにいる人間を検知する認識能力さえ欠けており、危険な衝突や事故を起こしやすくなります。このため、多くのメーカーは、ロボットを人間の同僚から隔離するためにケージや仕切りを追加しています。

最近では、より小型で軽量で、人間と一緒に作業するように設計された協働ロボットの導入により、安全性は産業オートメーションにおける主要な優先事項の 1 つになりました。大型産業用ロボットや協働ロボットについては、すでにさらなる規制が実施されています。

工場で絶対的な安全が達成されるまでにはまだまだ長い道のりがありますが、進歩が遂げられていることは間違いありません。ライトカーテン、レーザースキャナー、存在検知装置などの新しい技術は、人間の安全性を向上させる方法として広く検討されています。

製造業者にとって良い方法は、生産ラインでリスク評価を実施し、潜在的な事故への対応方法について作業員を訓練することです。

訓練が難しい

産業用ロボットはタスクを実行するために専門的なプログラミングとトレーニングを必要とするため、企業はロボットの設置を担当する経験豊富なエンジニアとプログラマーを雇う必要があります。さらに、新しく開発されたソフトウェアや新しいロボットが市場に登場した場合、経験豊富な人員であっても再トレーニングが必要になる場合があります。ロボットが正しくプログラムされていない場合、誤動作を引き起こし、周囲の人に怪我を負わせる可能性があります。

しかし、近年、ノーコードまたはローコードプログラミングというロボットをトレーニングする新しい方法が導入されています。これにより、コーディング経験の少ない従業員でも、ビジュアルモデリングとドラッグアンドドロップのユーザーインターフェイスを使用してロボットを構成できるようになります。ノーコードおよびローコード プラットフォームの使いやすい形式により、ロボットはアームを調整することでさまざまなジョブに合わせて再プログラムすることもできます。

ローコードおよびノー​​コード プラットフォームへの傾向が増加しており、米国、英国、カナダ、オーストラリアの企業の 84% がコーディングの必要性を減らすためにローコード開発プラットフォームを導入しています。

産業用ロボットは、人間の作業を簡素化し、製造業者に迅速な投資回収をもたらし、生産を合理化することが実証されています。ただし、制限がないわけではありません。ロボットは人間よりも訓練が難しく、多額の投資と維持費が必要で、安全上の課題もあります。これらはメーカーにとって正当な懸念事項ですが、慎重な計画と新しいテクノロジーによって克服することができます。

<<:  RPA 導入が失敗する 7 つの理由

>>:  NIST: AIの偏りはデータだけにとどまらない

ブログ    
ブログ    

推薦する

VB.NET 暗号化アルゴリズムの基本概念の分析

プログラミング言語の場合、その機能性を評価する上で最も重要な要素の 1 つはセキュリティ評価です。 ...

AI 開発企業向けのトップ機械学習フレームワーク (2020 年版)

[[283218]] [51CTO.com クイック翻訳] 実際、人工知能技術は私たちの生活を日々...

Hubo Technologyが「2019年グローバルフィンテックイノベーションTOP50」に選出されました

最近、世界をリードするインテリジェント金融検索エンジンであるHubo Technologyが「201...

...

...

...

...

人工知能が旅行業界にもたらす変化

観光業界では徐々に人工知能を導入し、観光客にパーソナライズされた体験を提供しています。人工知能の助け...

中国建設銀行のAI戦略

中国建設銀行の田国利会長は、「金融テクノロジーによってもたらされた包括的金融の伝統的なモデルの破壊的...

AIが新たな芸術を披露、700万人のネットユーザーがオンラインで視聴、ControlNetが新たな貢献

AIは非常に新しい芸術を演じています。 「とんでもないと合理的な境界線を繰り返しテストする」一連の写...

Heroku クラウドにディープラーニング Web アプリケーションをデプロイするためのヒントとコツ

[51CTO.com クイック翻訳] Heroku Cloud は、Web 開発者や機械学習愛好家の...

無人運転技術がますます成熟するにつれて、将来も運転免許証を取得する必要があるのでしょうか?それは確かだ

北京や上海などの街では、特別な車をよく見かけます。これらの車は車体の上部と側面に特別な装置が付いてい...

...

ディープラーニングを超える新しいAIプログラミング言語Genについて1つの記事で学びましょう

AI の急速な発展は多くの人々の学習意欲をかき立てていますが、初心者にとっては大量の手動プログラミン...

人工知能と機械学習がもたらす劇的な変化を示す6つの事例

[[219896]]現在、人工知能 (AI) と機械学習 (ML) ほど注目されているテクノロジーは...