このマウスはFPSゲームのプレイ方法を自ら学習し、トレーニングの精度はプロのプレイヤーと同等です。

このマウスはFPSゲームのプレイ方法を自ら学習し、トレーニングの精度はプロのプレイヤーと同等です。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

禁止されることなく自動的に狙いを定めて「正確にヒット」できる FPS プラグインを見たことがありますか?

実は、FPS ゲームでマウスを「スナイパー」に変えた CMU の大学院生がいるのです!

4 つのホイールを取り付けると、マウスは CV アルゴリズムからのフィードバックに基づいて自動的に狙いを定め、ワンショット スナイピングを実現できます。

これまでも物理的なプラグインはいくつかありましたが、マウスを動かして自動的に撮影を完了できるほど自動化されていませんでした。

サードパーティのソフトウェア変更やその他のプラグインを使用すると、アカウントが直接ブロックされる可能性が非常に高くなります。

彼は考えた末、ターゲットを自動で狙えるFPS物理プラグインを開発した。現在、彼のトレーニング場Aim Labでの成績は、一部のFPSプロプレイヤーを上回っている。

人間の FPS エキスパートの平均スコアは 80,000 ~ 90,000 ポイント程度ですが、このゲームは110,000 ポイント以上を獲得しました。

これを読んだネットユーザーの中には、「全然簡単じゃない」と言う人もいました。コードを書いたことがある人にとって、これは思ったほど簡単ではないのです。

それで、彼はどうやってそれをやったのでしょうか?

マウスをスナイパーに変身させよう

マウスが自ら狙いを定めることを「学習」できるようにするために、この人はまずマウスのシャーシを設計しました。

彼の構想では、シャーシはマウスで柔軟に動くはずであり、その原理はおそらく次のようになります。

アイデアが形成された後、シャーシには最終的に 4 つの全方向ホイールと対応する制御モーターが使用されました。

簡単に言えば、全方向の全方向車輪により、ロボットは直線歩行を含め、あらゆる方向に柔軟に移動することができ、これらの車輪は異なるモーターによって制御されます。

基本的な移動操作が実装された後、次のステップは、コンピューター ビジョン アルゴリズムを使用して、「自分で獲物を見つける」ことを学習させることです。

私は OpenCV をベースにした Pythonターゲット検出アルゴリズムを作成し、ターゲットの位置に基づいて対応するターゲットを素早くターゲットするようにトレーニングしました。

視覚データのフィードバックから操作まで、このロボットはPID 制御アルゴリズムを使用して、指定された時間内により多くのオブジェクトを狙えるように、ロボットが最も近い「撮影ポイント」を自ら見つけることを学習させます。

物体を狙うと、ロボットは自動的にマウスの「クリック」アクションをトリガーし、自動射撃を完了します。

テストではプロ選手よりも優れた成績を収めた

ロボットの能力を高めるために、この男性はAim Labと呼ばれる一人称視点シューティングゲームシミュレーターでロボットを訓練した。

現在、多くのプロの FPS プレイヤーが Aim Lab でトレーニングを行っています。Aim Lab には、ヒューマノイドの移動ターゲット、飛行ターゲットなど、さまざまな種類の射撃タスクも含まれています。

男が訓練した「マウスロボット」は、主に色のついたボールを撃つために使用されます。視覚アルゴリズムが自動的に色のついた球を見つけ、ロボットがそれに従って狙いを定めて撃ちます。

2か月のアルゴリズムテストを経て、彼はついに満足のいくロボットをトレーニングすることに成功しました。このロボットは現在、Aim Labで118,494という最高スコアを獲得しており、多くのプロのFPSプレイヤーを上回っています。

△プロプレイヤーがスコアを公開

しかし、Aim Labの最高記録(146902ポイント)はまだ破られていない。

もう一つの理由は、最高得点に挑戦する過程で、速度が速すぎてシャーシのモーターが焼き切れてしまい、再び最高得点に挑戦できなくなったことです(手動ドッグヘッド)。

この物理プラグインを開発した人物は、 Kamal Carterという人物です。彼は CMU で学士号を取得し、現在は CMU で修士号取得を目指して勉強しています。また、Howie Choset 教授が設立した HEBI Robotics 社でも働いています。

本人によると、高校生の頃からロボットで遊び始め、現在は機械設計やCADなどを研究対象としているという。

一部のネットユーザーは、このロボットにはもっと良いマウスが必要だと冗談を言った。

しかし、ネットユーザーの中には、この男はそのような能力を持っているのだから、物理的なプラグインを使うのではなく、何か役に立つことをすべきだと考える人もいる。

それで、どう思いますか?

OpenCV ビジョンアルゴリズムチュートリアル:

https://docs.opencv.org/4.x/df/d9d/tutorial_py_colorspaces.html

<<:  人工知能、ブロックチェーン技術などが医療分野を改善している

>>:  2022 年に注目すべき主要なエッジ AI トレンド

ブログ    
ブログ    

推薦する

人工知能アプリケーションのための6つの主要技術、ついに誰かがわかりやすく説明

01 ロボティックプロセスオートメーション(RPA) RPA (ロボティック プロセス オートメーシ...

...

スマートビルディングテクノロジーを導入する前に考慮すべき7つのこと

スマートビルディングの設備やシステムを評価する際には、体系的なアプローチを取る必要があります。これら...

ディープラーニングの成果は収穫されようとしているのでしょうか? 11人の専門家がAIの現在(2018年)と未来(2019年)について語る

KDnuggets は、学界と産業界のさまざまな分野の機械学習と AI の専門家 11 名に相談し、...

...

集団雷雨!自動化された攻撃により、主要な言語モデルを1分で脱獄できる

大規模な言語モデル アプリケーションが直面する 2 つの主要なセキュリティ上の脅威は、トレーニング ...

英国のAI研究者マイケル・ローンズによる機械学習の5つの大きな落とし穴を避けるための独占ガイド

[[416810]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

「AI論文のオープンソースコードの義務化に反対する理由」

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

音声技術市場には発展のチャンスがあるが、落とし穴には注意が必要

[[257487]] [51CTO.com クイック翻訳] 音声アシスタントの台頭により、マーケティ...

マイクロソフトのGitHubはAIを使ってソフトウェア開発者の心を理解しようとしている

コード共有サービス GitHub は、ソフトウェア開発者向けの人工知能アシスタント「GitHub C...

人工知能が農業市場に浸透:機械農業は従来の農家よりも優れている

山東省寿光市は中国の有名な野菜生産地です。そこには野菜温室がいくつあるのでしょうか? 機械で数えてみ...

iQIYI機械学習プラットフォーム構築実践

機械学習プラットフォームを構築する以前、iQiyi にはすでに比較的成熟したディープラーニング プラ...

...

GPTのようなモデルのトレーニング速度が26.5%向上、清華大学の朱俊らはINT4アルゴリズムを使用してニューラルネットワークのトレーニングを加速

アクティベーション、重み、勾配を 4 ビットに量子化することは、ニューラル ネットワークのトレーニン...