テキストの説明に基づいてビデオから画像を切り取る、Transformer:このクロスモーダルタスクは私が最も得意とすることです

テキストの説明に基づいてビデオから画像を切り取る、Transformer:このクロスモーダルタスクは私が最も得意とすることです

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

Transformer はマルチモーダルタスクの処理に適していると言われています。

現在、ビデオオブジェクトセグメンテーションの分野では、これを使用してテキストとビデオフレームを同時に処理し、よりシンプルな構造とより高速な処理速度(1秒あたり76フレーム)を備えたビデオインスタンスセグメンテーションフレームワークを提案した人もいます。

このフレームワークでは、一連のテキスト説明だけで、ビデオ内の動的なターゲットを簡単に「切り取る」ことができます。

エンドツーエンドでトレーニングでき、ベンチマークの複数の指標で既存のモデルよりも優れたパフォーマンスを発揮します

現在、関連論文はCVPR 2022に採択されており、研究者はイスラエル工科大学のものです。

本旨

テキスト記述からのビデオ オブジェクト セグメンテーション (RVOS) のマルチモーダル タスクでは、テキスト推論、ビデオ理解、インスタンス セグメンテーション、および追跡技術の組み合わせが必要です。

既存の方法では、通常、問題を解決するために複雑なパイプラインに依存しており、エンドツーエンドでシンプルで使いやすいモデルを形成することは困難です。

CV と NLP の分野が進歩するにつれて、研究者は、ビデオとテキストを単一のマルチモーダル Transformer モデルで同時に効果的に処理できることに気付きました。

この目的のために彼らはMTTRと呼ばれるものを提案した。   Multimodal Tracking Transformer の新しいアーキテクチャは、RVOS タスクをシーケンス予測問題としてモデル化します。

まず、入力テキスト フレームとビデオ フレームが特徴抽出のために特徴エンコーダーに渡され、次に 2 つが連結されてマルチモーダル シーケンス (フレームごとに 1 つ) になります。

次に、2 つの特徴関係がマルチモーダル Transformer を通じてエンコードされ、インスタンス レベルの特徴が予測シーケンスのセットにデコードされます。

次に、対応するマスクと参照予測シーケンスが生成されます。

最後に、予測されたシーケンスは、通常、トレーニング中の監督や推論中の最終予測の生成のために、教師あり学習のサンプル セット内のラベルを参照する、真実のシーケンスと照合されます。

具体的には、Transformer によって出力されるインスタンス シーケンスごとに、システムは対応するマスク シーケンスを生成します。

これを実現するために、著者らは FPN (Feature Pyramid Network) に類似した空間デコーダーと動的に生成された条件付き畳み込みカーネルを使用しました。

マスクとテキストの関連付けに基づく新しいテキスト参照スコア関数により、テキストで記述されたオブジェクトと最も強い関連性を持つクエリ シーケンスを特定し、そのセグメント化されたシーケンスをモデルの予測として返すことができます。

精度は既存のモデルよりも優れています

著者らは、JHMDB-Sentences、A2D-Sentences、Refer-YouTube-VOS という 3 つの関連データセットで MTTR のパフォーマンスをテストしました。

最初の 2 つのデータセットの測定指標には、IoU (積和、1 は予測ボックスが実際のボックスと完全に重なることを意味します)、平均 IoU、および precision@K (すべての結果に対する正しく予測された関連結果の割合) が含まれます。

結果は次のとおりです。

MTTR はすべての指標において既存のすべての方法よりも優れており、SOTA モデルと比較して最初のデータセットの mAP 値 (平均精度) も 4.3 向上していることがわかります。

MTTR の最上位バージョンは、平均および全体の IoU 指標で 5.7 の mAP ゲインを達成し、単一の RTX 3090 GPU で 1 秒あたり 76 フレームの画像を処理できます。

JHMDB での MTTR の結果は、MTTR にも優れた一般化能力があることを示しています。

より困難なRefer-YouTube-VOSデータセットの主な評価指標は、領域類似度 (J) と輪郭精度 (F) の平均です。

MTTR はこれらすべての指標において「わずかに勝利」しています。

いくつかの視覚化結果から、ターゲット オブジェクトが類似のインスタンスに囲まれていたり、遮蔽されていたり、完全にフレーム外にあったりする場合でも、MTTR はテキストで参照されるオブジェクトを正常に追跡およびセグメント化できることが示されています。

最後に、著者は、この成果を通じて、マルチモーダルタスクにおける Transformer の可能性をより多くの人々が認識してくれることを期待していると述べました。

最後に、著者は2つのトライアルチャンネルも開設しました。興味のある学生は記事の最後にあるリンクをクリックしてください〜

△ Colabトライアル効果

トライアルアドレス:
​​https://huggingface.co/spaces/akhaliq/MTTR​​

​​https://colab.research.google.com/drive/12p0jpSx3pJNfZk-y_L44yeHZlhsKVra-?usp=sharing​​

論文の宛先:
​​https://arxiv.org/abs/2111.14821​​

コードはオープンソースです:
​​https://github.com/mttr2021/MTTR​​

<<:  USTC 統合入力フィルタリング フレームワーク: すべてのデータ モダリティをサポートするフィルタリング可能性の最初の理論的分析

>>:  AI と IoT によって貨物輸送はどのようにスマート化されるのでしょうか?

ブログ    
ブログ    

推薦する

遠隔医療市場は2020年に65%近く成長すると予測

フロスト・アンド・サリバンの新しい遠隔医療市場予測によると、COVID-19パンデミックの影響で、遠...

3つの主要なトレンド予測:なぜ2021年に流行によりAIが主流になるのか?

2021 年に AI は創薬、在宅勤務、エッジ コンピューティングをどのように変えるのでしょうか?...

...

米国のパイロットがエイリアンの存在を確認!米国は10年間UFOのリバースエンジニアリングを行っており、マスク氏はそれを否定していない

ちょうど昨日、米国議会は、米国政府が不時着したエイリアンの宇宙船とエイリアンの遺体を発見し、それを隠...

モデルが 10 倍大きくなると、パフォーマンスは何倍向上しますか? Googleの研究者が調査を実施

ディープラーニング モデルが大きくなるにつれて、あらゆる種類のハイパーパラメータ調整を行うのは非常に...

人工知能はセキュリティの優れた防御線である

2021年を迎え、私たちは新しい働き方や新しい労働環境に慣れてきました。多くの人は、デジタル通信手段...

...

AIの有効性はサイバーセキュリティでは限られているが、サイバー犯罪では無限である

AI は大きな可能性を秘めているにもかかわらず、サイバーセキュリティにおける AI の応用は非常に限...

マイクロソフトの無料 AI エッセイ採点ソフトウェアがアップグレード: IELTS、CET-4、CET-6 に使用可能

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

VB.NET コーディングアルゴリズム学習ノート

この記事では、VB.NET コーディング アルゴリズムを紹介します。おそらく、まだ多くの人が VB....

ガベージクリーニングは必須 - Java ガベージコレクションアルゴリズム

1. Javaガベージコレクションアルゴリズムの核となる考え方Java 言語は、使用中のオブジェクト...

大規模言語モデルはウォール街に勝てるか?株式選択における AI の可能性を明らかにする

金融分野における人工知能(AI)の応用は、特に株式市場の分析と予測において、幅広い注目と議論を集めて...

Tフロントライン | テンセントAILabとの独占インタビュー:「点」から「線」へ、実験室は単なる実験以上のもの

ゲスト:石淑明執筆者: Mo Qi校正:趙雲「ほとんどの研究は一つの点を中心に展開する傾向があるが、...

データとAIが現代の人事慣行をどのように変えているのか

今日の人事チームにはバランスを取ることが求められています。一方では、データと AI の力を活用してビ...

Meili United のビジネスアップグレードにおける機械学習の応用

一般的に、機械学習は電子商取引の分野では、推奨、検索、広告の 3 つの主要な用途があります。今回は、...