MITの新しい研究により、物体間の潜在的な関係性を理解し、AIが人間のように世界を「見る」ことが可能になった。

MITの新しい研究により、物体間の潜在的な関係性を理解し、AIが人間のように世界を「見る」ことが可能になった。

[[441262]]

人々がシーンを観察するとき、通常はシーン内のオブジェクトとそれらの間の関係を観察します。たとえば、次のようなシーンを説明することがよくあります。机の上にノートパソコンがあり、ノートパソコンの右側に携帯電話があります。

しかし、ディープラーニング モデルでは各オブジェクト間の関係を理解し​​ていないため、このタイプの観察を実現するのは困難です。これらの関係を理解し​​なければ、機能的なロボットがタスクを完了することは困難です。たとえば、キッチンロボットは、「中華鍋の左側にあるフルーツナイフを持ち上げてまな板の上に置く」などのコマンドを実行することが困難です。

この問題に対処するため、NeurIPS 2021 Spotlight 論文で、MIT の研究者らは、シーン内のオブジェクト間の根本的な関係を理解できるモデルを開発しました。モデルは一度に 1 つの個別の関係を特徴付け、これらの表現を組み合わせてシーン全体を記述し、テキスト記述からより正確な画像を生成できるようにします。

論文アドレス: https://arxiv.org/abs/2111.09297

現実の世界では、人々は座標によって物体の位置を特定するのではなく、物体間の相対的な位置関係に依存します。この研究の成果は、倉庫での品物の積み重ねや電化製品の組み立てなど、産業用ロボットが複雑で多段階の操作タスクを実行しなければならない状況に応用できる可能性があります。さらに、この研究は、機械が人間のように環境から学習し、環境とやりとりできるようになることに役立つ可能性があります。

一度に1つの関係を表す

この研究では、エネルギーベースのモデルを使用して個々の関係を表現し、非正規化密度に分解することを提案しています。関係シーンの記述は、関係上の独立した確率分布として特徴付けられ、個々の関係はそれぞれ別の画像上の確率分布を指定します。このような組み合わせたアプローチにより、複数の関係間の相互作用をモデル化できます。

この研究では、提案されたフレームワークが複数の構成関係を持つ画像を確実にキャプチャおよび生成し、潜在的な関係シーンの記述を推測し、意味的に同等な関係シーンの記述を堅牢に理解できることが実証されています。

一般化の点では、この方法は、トレーニング中に見られなかったデータセットからのオブジェクトや説明など、これまで見られなかった関係の説明に一般化できます。この種の一般化は、一般的な AI システムが周囲の世界の無限の変化に適応するために不可欠です。

以前のシステムの中には、すべての関係を全体として捉え、説明から一度に画像を生成するものもありました。ただし、これらのモデルは、より多くの関係が追加された画像に実際には適応できません。対照的に、私たちのアプローチでは、個別の小さなモデルを組み合わせることで、より多くの関係をモデル化し、関係の新しい組み合わせに適応できるようになります。

さらに、このシステムは逆方向にも動作することができ、画像が与えられると、シーン内のオブジェクト間の関係に一致するテキストの説明を見つけることができます。モデルは、シーン内のオブジェクトを新しい説明と一致するように並べ替えることで、画像を編集することもできます。

研究者らは、自分たちのモデルをいくつかの類似したディープラーニング手法と比較し、いずれの場合も自分たちのモデルがベースラインを上回る性能を示したことを示しました。

また、生成された画像が元のシーンの説明と一致しているかどうかを評価するよう人々に呼びかけました。 3 つの関係を説明した例では、参加者の 91% が、このモデルは以前のモデルよりもパフォーマンスが優れていると考えました。

これらの初期の結果は有望であり、研究者たちは将来、物体の遮蔽やシーンの乱雑さなどの問題を解決する必要のある、より複雑な現実世界の画像に対してモデルを実行できるようになることを期待しています。

また、このモデルが最終的にはロボットシステムに統合され、ロボットが現実世界の物体間の関係を推測し、インタラクティブなタスクをより適切に完了できるようになることも期待されています。

興味のある読者は、研究の詳細について原著論文を読むことができます。

<<:  壁を登る毛虫のように、上海交通大学の新しいソフトロボットは水平にも垂直にも動くことができる

>>:  データは1/5000に縮小されたが、モデルの精度は2倍に。Googleの新しい「蒸留法」が人気に

ブログ    
ブログ    

推薦する

...

スマートドライビングが誕生してから10年経った今、なぜ理想的なビジネスモデルの実現が難しいのでしょうか?

[[420239]] 2011年7月14日、紅旗HQ3は長沙から武漢までの286キロの高速道路を疾...

...

人工知能が爆発的に進化しています。この「鉄の飯碗」を手に入れるための新しいガイドをぜひ保存してください!

近年の人工知能の発展スピードは驚異的で、あらゆる分野で専門的なAIが登場しています。上海では以前、無...

中国初のAI採点試験がスタート:全10レベル、北京大学が問題作成、工業情報化部が認定

[[277668]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

2019年のAIチップの6つのキーワードと2020年の4つの大きなトレンド

2019 年 2 月、チューリング賞受賞者のジョン L. ヘネシー氏とデビッド A. パターソン氏は...

検索エンジン技術のランキングアルゴリズムを解読する

[[117973]] 1. ページランクPageRank は、世界で最も人気のある検索エンジンである...

...

クラウドとSaaSのセキュリティには包括的なアプローチが必要

米国国土安全保障省および米国国税庁の元最高情報責任者であり、現在は Learning Tree In...

人工知能技術に注目し導入すべき3つの理由

AI の導入が拡大しているにもかかわらず、多くの IT リーダーは AI のリスクと機会を取り巻く不...

MIT教授が交通渋滞を解決するアルゴリズムを開発

交通渋滞は車をブロックするだけでなく、人々の心もブロックします。車の窓から頭を出して、目の前に無限に...

準備はできたか? GNN グラフ ニューラル ネットワーク 2021 年の主要なアプリケーション ホットスポット 5 つ

[[378224]]今年から始めます。グラフニューラルネットワークは研究者の間で話題になっており、こ...

業界大手がIoTとAIを成功裏に導入するための3つのステップ

変化は避けられませんが、人間はそれに抵抗する傾向があります。エリザベス1世女王は、編み機の発明によっ...