建設業界における人工知能のメリット

建設業界における人工知能のメリット

建設における AI は、設計、入札、資金調達、調達、建設、運用、資産管理、ビジネス モデルの変革など、プロジェクトのライフサイクル全体にわたって参加者が価値を実現できるように支援する可能性があります。建設業界における AI は、安全性の問題、労働力不足、コストとスケジュールの超過など、建設業界が抱える最も困難な課題のいくつかを克服するのに役立っています。

[[436406]]

建設における人工知能の 3 つの利点:

1. コスト超過を防ぐ

優秀なプロジェクトチームを雇用したにもかかわらず、ほとんどの大規模プロジェクトは予算を超過してしまいます。 AI は、プロジェクトの規模、契約の種類、プロジェクト マネージャーの能力レベルなどの要素に基づいてコスト超過を予測するためにプロジェクトで使用されます。予測モデルは、計画された開始日や終了日などの履歴データを使用して、将来のプロジェクトの現実的なタイムラインを予測します。 AI は、従業員が実際のトレーニング資料にリモートでアクセスできるようにし、スキルと知識を迅速に向上させるのに役立ちます。これにより、プロジェクトに新しいリソースを導入するために必要な時間が短縮されます。その結果、プロジェクトの納品が加速されます。

2. AIはジェネレーティブデザインを通じて建物をより良く設計できる

ビルディング インフォメーション モデリングは、建築、エンジニアリング、建設の専門家に建物やインフラストラクチャを効果的に計画、設計、構築、管理するための洞察を提供する 3D モデル ベースのプロセスです。プロジェクトの建設を計画および設計するには、3D モデルで建築、エンジニアリング、機械、電気、配管 (MEP) の計画と各チームの活動の順序を考慮し、異なるチームの異なるモデルが互いに競合しないようにする必要があります。

AI 駆動型ジェネレーティブ デザインの形で AI を使用して、異なるチームによって生成された異なるモデル間の競合を特定して軽減し、やり直しを防止します。一部のソフトウェアでは、AI アルゴリズムを使用してソリューションのすべてのバリエーションを調査し、設計の代替案を生成します。ユーザーがモデルに要件を設定すると、ジェネレーティブ デザイン ソフトウェアは制約に合わせて最適化された 3D モデルを作成し、理想的なモデルが生成されるまで各反復から学習します。

3. リスク軽減

すべての建設プロジェクトには何らかのリスクが伴い、リスクには品質、安全性、時間、コストのリスクなど、さまざまな形があります。プロジェクトが大きくなるほど、現場では複数の下請け業者がさまざまな職種で並行して作業するため、リスクも大きくなります。現在、ゼネコンは AI ソリューションを使用して現場のリスクを監視および優先順位付けしており、プロジェクト チームは限られた時間とリソースを最大のリスク要因に集中させることができます。 AI は問題を自動的に優先順位付けするために使用されます。下請業者はリスク スコアに基づいて評価されるため、建設プロジェクトのリーダーは下請業者のチームと緊密に連携してリスクを軽減できます。

https://www.hzaoz.com

<<:  スマートビルと建築技術の未来

>>:  人工知能に最適なプログラミング言語

ブログ    
ブログ    

推薦する

LIDAR ポイント クラウドの自己教師あり事前トレーニング用 SOTA!

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

自動運転時代の前夜、ACCクルーズテクノロジーが台頭

自動車が発明された日から、自動運転機能への要望は、何世代にもわたるエンジニアたちの焦点となってきまし...

何開明のMAE制限が破られ、Swin Transformerと組み合わせることで、トレーニング速度が向上しました

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

AI、IoT、ビッグデータでミツバチを救う方法

現代の農業はミツバチに依存しています。私たちが食べる食物や呼吸する空気を含む生態系のほぼ全体が、花粉...

...

機械学習、データサイエンス、人工知能、ディープラーニング、統計などの違い。

データ サイエンスは幅広い分野であるため、まずはあらゆるビジネスで遭遇する可能性のあるデータ サイエ...

...

...

インターネットの大失敗: 破壊された破壊者

[[324391]]インターネットの破壊的イノベーションは、自らの業界から生まれることはありません...

Facebook の応用機械学習チームを訪問: 研究と応用の間に橋を架けるにはどうすればよいでしょうか?

Facebook では、応用機械学習チームがソーシャル ネットワークの視覚、会話、理解を支援してお...

どのような状況で Redis のメモリ オーバーフローが発生しますか?解決策は何ですか?

Redis のメモリ オーバーフローの問題は、通常、次のような状況によって発生します。データが多す...

2021年にAIが農業を改善する可能性のある10の方法

PwCは、モノのインターネット(IoTAg)ベースの農業モニタリングがコネクテッドスマート農業の分野...

畳み込みニューラルネットワークの父:人工知能が動画から常識を学ぶための次のステップ

志東西(公式アカウント:zhidxcom)起源ディープラーニング分野の大物として、ヤン・ルカン氏は近...

Microsoft の Zhu Chenguang: 事前トレーニング済みモデルの次のステップは何ですか? PLMの「不可能の三角形」を突破する

近年、大規模な事前トレーニング済み言語モデル (PLM) により、さまざまな NLP タスクのパフォ...