複数のアルゴリズムの動的な表示を実装するこのPythonライブラリは、ネットワークグラフのコミュニティ構造を発見するのに役立ちます。

複数のアルゴリズムの動的な表示を実装するこのPythonライブラリは、ネットワークグラフのコミュニティ構造を発見するのに役立ちます。

[[382977]]

コミュニティ発見アルゴリズムに精通しているなら、この Python ライブラリを見逃すことはできません。 LouvainアルゴリズムやGirvan-Newmanアルゴリズムなどのさまざまなコミュニティ発見アルゴリズムをカバーし、可視化機能も備えています。

ネットワークは、密接に接続された多数のノードで構成されており、異なるノード間の接続の程度に応じて、ネットワークは異なるクラスターで構成されていると考えることもできます。クラスター内のノードはより密接に接続されていますが、異なるクラスター間の接続は比較的疎です。このようなクラスターは、ネットワーク内のコミュニティ構造と呼ばれます。

これから派生したコミュニティ検出アルゴリズムは、ネットワーク内のコミュニティ構造を検出するために使用されます。このようなアルゴリズムには、Louvain アルゴリズム、Girvan-Newman アルゴリズム、Bron-Kerbosch アルゴリズムなどがあります。

最近、Machine Heart は、グラフ内のコミュニティ構造を検出できる、communities という Python ライブラリを GitHub で発見しました。このライブラリは、ソフトウェア エンジニアの Jonathan Shobrook によって作成されました。

プロジェクトアドレス: https://github.com/shobrook/communities

まず、ライブラリは次のコミュニティ検出アルゴリズムを実装できます。

  • ルーヴァンアルゴリズム
  • ガーバン・ニューマンアルゴリズム
  • 階層的クラスタリング
  • スペクトルクラスタリング
  • ブロン・ケルボッシュアルゴリズム

次に、ユーザーはコミュニティ ライブラリを使用して、上記のアルゴリズムを視覚化することもできます。次の図は、Zachary の空手クラブ ネットワークにおける Louvain アルゴリズムの視覚化結果を示しています。

このライブラリのインストール方法も非常に簡単です。コミュニティをインストールするには、pip を使用します。コードは次のとおりです。

  1. $ pip インストールコミュニティ

多くのネットユーザーがこの Python ライブラリを高く評価し、試してみると述べました。

アルゴリズムの詳細な説明

ルーヴァンアルゴリズム

  1. louvain_method(adj_matrix: numpy.ndarray, n: int = None) -> リスト

このアルゴリズムは、「大規模ネットワークにおけるコミュニティの高速展開」という記事 (略称 Louvian) から引用したものです。

モジュール性に基づくコミュニティ発見アルゴリズムとして、Louvain アルゴリズムは効率性と有効性の面で比較的優れたパフォーマンスを発揮し、階層的なコミュニティ構造を発見することができます。その最適化目標は、グラフ属性構造 (コミュニティ ネットワーク) 全体のモジュール性を最大化することです。

Louvain アルゴリズムは、グラフのモジュール性を最大化するコミュニティを貪欲に検索します。グラフのグループ内エッジの密度が高く、グループ間エッジの密度が低い場合、そのグラフはモジュール グラフと呼ばれます。

サンプルコードは次のとおりです。

  1. community.algorithms から louvain_methodadをインポートします
  2. j_matrix = [...]
  3. コミュニティ、_ = louvain_method(adj_matrix)

ガーバン・ニューマンアルゴリズム

  1. girvan_newman(adj_matrix: numpy.ndarray, n: int = None) -> リスト

このアルゴリズムは、「社会的および生物学的ネットワークにおけるコミュニティ構造」という記事から引用したものです。

Girvan-Newman アルゴリズムは、エッジを繰り返し削除して、より接続されたコンポーネントを作成します。各コンポーネントはコミュニティとして扱われ、モジュール性をこれ以上増加できなくなった時点でアルゴリズムはエッジの削除を停止します。

サンプルコードは次のとおりです。

  1. community.algorithms から girvan_newmanをインポートします
  2. adj_matrix = [...]
  3. コミュニティ、_ = girvan_newman(adj_matrix)

階層的クラスタリング

  1. hierarchical_clustering(adj_matrix: numpy.ndarray、metric: str = "cosine" 、linkage: str = "single" 、n: int = None) -> list

階層的クラスタリングは、ボトムアップの階層的クラスタリング アルゴリズムを実装します。各ノードは独自のコミュニティから始まり、階層が構築されるにつれて、最も類似したコミュニティが統合されます。モジュール化がこれ以上進展しなくなるまで、コミュニティは統合されます。

サンプルコードは次のとおりです。

  1. community.algorithms から hierarchical_clusteringをインポートします
  2. adj_matrix = [...]
  3. コミュニティ = hierarchical_clustering(adj_matrix、メトリック = "ユークリッド" 、リンク = "完全" )

スペクトルクラスタリング

  1. spectral_clustering (adj_matrix: numpy.ndarray, k: int ) -> リスト

このタイプのアルゴリズムでは、隣接行列の固有値にコミュニティ構造に関する情報が含まれていると想定しています。

サンプルコードは次のとおりです。

  1. community.algorithms から spectral_clusteringをインポートします
  2. adj_matrix = [...]
  3. コミュニティ = スペクトルクラスタリング(adj_matrix, k= 5 )

ブロン・ケルボッシュアルゴリズム

  1. bron_kerbosch(adj_matrix: numpy.ndarray、pivot: bool = False) -> リスト

最大クリーク検出のための Bron-Kerbosch アルゴリズムの実装。グラフ内の最大クリークは、完全なグラフを形成するノードのサブセットであり、このサブセットにノードを追加すると、完全ではなくなります。クリークはグラフ内で最も密接に接続されたノードのグループであるため、最大のクリークをコミュニティと見なすのが妥当です。ノードは複数のコミュニティのメンバーになることができるため、アルゴリズムは重複するコミュニティを識別することがあります。

サンプルコードは次のとおりです。

  1. community.algorithms から bron_kerboschをインポート
  2. adj_matrix = [...]
  3. コミュニティ = bron_kerbosch(adj_matrix, pivot=True)

視覚化

描画

  1. draw_communities(adj_matrix: numpy.ndarray、コミュニティ: リスト、dark: bool = False、ファイル名: str = None、シード: int = 1 )

グラフを視覚化し、ノードを所属するコミュニティごとにグループ化し、色分けします。プロットを表す matplotlib.axes.Axes を返します。サンプルコードは次のとおりです。

  1. community.algorithms から louvain_methodをインポートします
  2. community.visualization から draw_communitiesをインポートします
  3. adj_matrix = [...]
  4. コミュニティ、フレーム = louvain_method(adj_matrix)
  5. draw_communities(adj_matrix、コミュニティ)

視覚化は次のようになります。

ルーヴァンアルゴリズムのアニメーションイラスト

  1. louvain_animation(adj_matrix: numpy.ndarray、フレーム: リスト、dark: bool = False、duration: int = 15 、filename: str = None、dpi: int = None、seed: int = 2 )

グラフに Louvain アルゴリズムを適用すると、アニメーション化されたグラフィック表示を実装できます。各ノードの色は、そのノードが属するコミュニティを表し、同じコミュニティ内のノードはクラスター化されます。

サンプルコードは次のとおりです。

  1. community.algorithms から louvain_methodをインポートします
  2. community.visualization から louvain_animationをインポート
  3. adj_matrix = [...]
  4. コミュニティ、フレーム = louvain_method(adj_matrix)
  5. louvain_animation(adj_matrix、フレーム)

アニメーション画像を以下に示します。

<<:  世界を驚かせたNASAの火星無人機はどのように設計されたのか?

>>:  AI面接官はこんなに簡単に騙される!本棚の写真を動画の背景として使用すると好感度が 15% 上昇します

ブログ    
ブログ    
ブログ    

推薦する

陳一然教授の論文が2024 IEEE優秀論文賞を受賞しました! STN-iCNN: エンドツーエンドの顔解析フレームワーク

陳一然教授の論文が賞を受賞しました!この顔認識/分析に関する論文は、2024 IEEE CIS TE...

...

ITとビジネスの調和を実現する: デジタル変革にローコードが不可欠な理由

[51CTO.com クイック翻訳]ビジネスの世界では、デジタルトランスフォーメーションという言葉を...

...

ビッグデータと人工知能のために生まれた新しい職業:アルゴリズム専門家

[[69076]]映画「マトリックス」でレオが銃弾の雨をかわす難しい動きを誰もが覚えているはずだ。こ...

67トピック、11528の質問、新しい中国の大規模モデルマルチタスクベンチマークCMMLUがリリースされました

MBZUAI、上海交通大学、Microsoft Research Asia は協力して、包括的な中国...

Apple、Google Play ランキングアルゴリズム

すべてのアプリにおいて、製品自体が登場する前、アイデアが生まれた時点で、すでに製品マーケティングの問...

...

IDC: 生成型AIへの世界的な支出は2027年に1,430億ドルに達する

IDC は最近、世界中の企業による生成 AI サービス、ソフトウェア、インフラストラクチャへの支出が...

人工知能は人間の弱点を克服できる

人工知能の多くの利点はよく知られ、理解され、宣伝されていますが、その限界も明らかです。しかし、あまり...

ワンジ自動車ミリ波レーダーポイントクラウド技術の分析

レーダー点群のセマンティックセグメンテーションは、レーダーデータ処理における新たな課題です。このタス...

...

50 以上の実用的な機械学習および予測 API (2018 年版)

[51CTO.com クイック翻訳] この記事では、顔認識や画像認識、テキスト分析、自然言語処理 ...

この敵対的アルゴリズムは顔認識アルゴリズムを失敗させ、WeChatやWeiboの写真圧縮にも抵抗できる。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...