人体の中で自由に動くロボット:柔軟でしなやか、毛細血管まで

人体の中で自由に動くロボット:柔軟でしなやか、毛細血管まで

[[408943]]

7月1日のニュースによると、最近、ヨーロッパの大学の中国の科学者は、シート状のソフトロボットが流体内の環境に適応し、転がり、波状這い、波状水泳、らせん状の表面這いなどのマルチモーダル動作を実現できるようにする新しい制御および性能向上戦略を提案した。

この研究は、科学誌「サイエンス・アドバンス」に「液体で満たされた限られた空間における軟体適応型マルチモーダル移動戦略」と題する論文として発表された。

1. 既存のマイクロロボットは環境に適応して移動できない

流動する液体で満たされた狭い空間内をスムーズに移動するには、ソフトロボットが流体の抵抗と境界との摩擦を克服するのに十分な推力を発生させる必要があります。従来の剛性設計の磁気マイクロロボットは移動はできるものの、環境の変化への適応性に欠けており、生物の軟組織と接触すると安全性に問題が生じる可能性があります。

別の解決策としては、ロボットのサイズを空間の断面積よりも小さくし、壁の効果を利用して流体抵抗を最小限に抑えることですが、このアプローチは小さな血管(毛細血管など)内の動きには適していません。

最新の解決策は、柔軟なソフト素材を使用してロボットのボディを構築し、流体空間内で受動的に移動できるようにすることですが、この解決策が能動的な動きの機動性を保証できることはまだ証明されていません。

2. 中国の科学者がシート状のソフトロボットのさまざまな動作モードを設計

マイクロロボットの動作効率も科学者の注目点の1つです。シート状のソフトロボットは、さまざまな環境シナリオに応じて、プログラム制御の下で最適な動作モードを選択できます。シート状のソフトロボットの大きさよりもはるかに広い空間では、ロボットは丸くなって転がることができます

より狭い空間では、ロボットは体の状態の変動に応じて前進したり、這ったり泳いだりして移動速度を上げることができます。

円筒状のチューブの空間では、ロボットは空間の螺旋面に沿って移動することができ、空間内の流体の抵抗を相殺してスムーズに目標位置に到達できます。

3. 周波数駆動と姿勢制御によりシート状ソフトロボットに高い機動性を与える

マイクロロボットは、空間内で流体とともに受動的に移動するだけでなく、能動的に移動する能力も必要です。ロボットが異なる作動周波数で異なる流体粘度に置かれると、異なる摩擦力と流体力学の力を受けます。磁気駆動周波数を変更することで、ロボットの機体移動や推進方向に異なる運動エネルギーを与えることができます。駆動周波数が 1 Hz の場合、シート ロボットはウェーブ クローリングを実行し、駆動周波数が 10 Hz の場合、シート ロボットはウェーブ スイミングを実行し、シート ソフト ロボットに異なる動作スキームを提供します。

マイクロロボットは移動中にさまざまな経路状態に遭遇しますが、姿勢を適時に調整することで移動モードを変更できます。たとえば、マイクロロボットが液体で満たされた円筒形のチューブ内を移動するとき、ロボットは体を丸めて螺旋状の表面に近づくことができます。この位置の利点は、パイプが詰まらず、流体が通過できることです。この姿勢では、ロボットは動的アライメントを通じて方向を回転させることが可能であり、それによって逆流体運動を実現できます。

結論:シート状ソフトロボットは医療用途に幅広い可能性を秘めている

人体の内部空間は、停滞した体液(粘液など)や流動する体液(血液など)で満たされており、マイクロロボットの動きを大きく妨げます。

このシート状のソフトロボットは、さまざまな動作モードを通じて環境に適応し、限られた流体空間内をスムーズに移動することができ、限られた空間でのマイクロロボットの動作モードの開発に新しいアイデアを提供します。

シート状のソフトロボットは、最小限の侵襲で狭い流体領域を安全に移動でき、身体の危険な部分やアクセスが困難な部分に入ることができるため、将来の医療用途に大きな可能性を示しています。例えば、この技術を標的送達、細胞移植、内視鏡的移動、低侵襲手術に利用することで、患者の身体的苦痛を軽減し、より多くの患者に利益をもたらすことができます。

<<:  百度の自動運転技術は掘削機の運転を熟練ドライバーと同等の効率化に導く

>>:  ヒントン、ルカン、ベンジオは、ディープラーニングの過去、現在、未来に関する1万語の記事を共同で発表した。

ブログ    
ブログ    

推薦する

アンサンブル学習: 3人の頭脳は1人の頭脳よりも優れている

[51CTO.com からのオリジナル記事] 「靴屋が 3 人いれば、諸葛亮 1 人より優れている」...

人工知能は二酸化炭素排出量のせいで制限されるのでしょうか?

AI にカーボン フットプリントがあることは驚くことではありません。カーボン フットプリントとは、...

機械学習プロジェクトに十分なデータがありませんか?ここに5つの良い解決策があります

人工知能プロジェクトに着手する企業の多くは素晴らしいビジネスアイデアを持っていますが、企業の AI ...

データラベラーの視点からAI技術の詳細な応用を検討する

[原文は51CTO.comより] 最近、AI分野のブラックテクノロジーは、人々の人工知能に対する認識...

2020 年の RPA の 7 つの主要トレンド: AI の有効化からより戦略的な拡張まで

ロボティック プロセス オートメーション (RPA) サービス プロバイダーである Blue Pri...

中国の博士が127ページの論文「自然言語処理におけるグラフニューラルネットワークの初心者からマスターまで」を発表

グラフは、複雑なシステムを記述およびモデル化するために使用できる一般的な言語です。グラフは、構文情報...

...

AIがあらゆるところに存在している世界を想像してみてください

[[360153]]あなたをモデルに、考え、反応し、行動するように訓練されたロボットを想像してみてく...

VAE から拡散モデルへ: テキストを使用して画像を作成する新しいパラダイム

1 はじめにDALL·E のリリースから 15 か月後、OpenAI は今春、続編の DALL·E ...

国連チーフAIアドバイザーとの独占インタビュー:AIは完璧だと期待しているが、決して完璧ではない

[[384962]]ビッグデータダイジェスト制作出典: informationweek編纂者:張大毓...

...

第一回美団クラウド人工知能サミットが開幕、エコパートナーと協力して最もオープンなAIプラットフォームを構築

10月31日、中関村サイエンスパーク管理委員会の指導の下、美団クラウドが主催し、「AIの力で共存とW...

アマゾンがホームロボット「Vesta」を開発、2019年に販売開始

海外メディアの報道によると、アマゾンのハードウェア研究開発部門Lab126は、「Vesta」(ヴェス...

NvidiaとAMDがAI PCへの投資を増加:デスクトップコンピュータにAIチップを搭載

GPU の二大巨頭である Nvidia と AMD は最近、デスクトップ コンピューター向けの新しい...