AIOps が企業で成功する方法

AIOps が企業で成功する方法

企業による IT 運用における人工知能の使用は AIOps として知られています。 AIOps は、ハイブリッド、流動的、分散型、コンポーネント化された IT インフラストラクチャの監視と制御に不可欠になります。

AIOps により、IT 運用チームと DevOps チームは IT データをアルゴリズム的に分析してよりスマートかつ迅速に運用できるようになり、ビジネス運用や消費者に損害が及ぶ前にデジタル サービスの問題をより迅速に発見して解決できるようになります。

[[408332]]

企業の IT 運用チームは、AIOps を使用して、最新の IT インフラストラクチャによって生成される膨大な複雑さと量のデータを管理し、停止を防ぎ、稼働時間を維持し、継続的に高品質のサービスを実現できます。

AIOps は、IT をデジタル変革活動の中心に据えることで、企業が現代のビジネス ニーズに合わせたスピードで業務を遂行できるようにします。

AIOps はどのように機能しますか?

すべての AIOps 製品が同じように作られているわけではありません。企業はこれをスタンドアロン インフラストラクチャとしてインストールし、すべての IT 監視ソースからデータを取り込み、そこから最大限の価値を引き出すための中心的な対話システムとして機能する必要があります。

企業が IT 運用監視の 5 つの重要な側面を完全に自動化および簡素化するプラットフォームを強化するために使用できるアプローチとアルゴリズムは 5 つあります。

  • データ選択: 現代の IT システムによって作成された、非常に冗長でノイズの多い膨大な IT データからデータ チャンクを選択します。このとき、無効なデータを最大 99% 除去する必要が生じることがよくあります。
  • パターン検出: 選択された関連データ コンポーネント間の関連付けとリンクを確立し、将来の分析のために分類します。
  • 推論: 困難で繰り返し発生する問題の根本原因を特定し、学んだ内容に基づいてビジネスが対応できるようにします。
  • コラボレーション: 特にスタッフが地理的に分散している場合に、運用スタッフとチームに通知してスタッフ間のコラボレーションを可能にするとともに、将来同様の問題の診断を迅速化するのに役立つインシデント データを保存します。
  • 自動化: 回答をより正確かつ迅速にするために、応答とクリーンアップを可能な限り自動化します。

AIOps を成功に導く 4 つのステップ

(1)初期のユースケースを慎重に選択する

デジタル化の候補は数多くありますが (たとえば、BMC Services & Consulting の専門家は、自社の製品ラインと、キャンペーン制作、サービス管理、機械化の 3 つの機能を組み合わせて、優れたビジネス定義ソリューションを提供することで、多くのクライアントを支援してきました)、デジタル変革を最大限に実現するには、達成可能で実用的なものに焦点を当てることが重要です。現在の AI 開発レベルを考えると、多くのお客様がまず基本的な AIOps ユースケースに焦点を当てていますが、これはより複雑なユースケースの構成要素としても使用できます。

(2)成功のための新たな戦略の採用

AIOps を導入するには、テクノロジーだけでなく、新しい役割、手順、データ戦略の実装も必要です。ほとんどの企業で AIOps を効果的に導入するには、導入に関わるテクノロジーではなくデータ ソースに重点を置く再編成が必要になることが多いため、文化的な変化が必要です。

(3)コア能力の開発

IT チームは AIOps を採用することで模範を示し、他のデジタル変革テクノロジーと同様の基礎機能を構築できます。

(4)提供価値の追跡

IT 部門は、デジタル変革の取り組みを成功させるために、AIOps の導入によって達成されるビジネス価値を実証する必要があります。カスタマー サクセスでは、統一された正式なビジネス価値データベースを作成することで、クライアントのビジネス価値の監視をサポートします。この値は、修復時間 (MTTR) の短縮など、ビジネス価値データベース内のより広範な組織目標に結び付ける必要があります。

AIOps の推進要因

AIOps の導入を推進する草の根運動は存在しないようです。 「AIOps は CIO が主導し、ITOps がすぐ後に続きます」と業界の専門家であるオコネル氏は言います。「AIOps は本質的にドメイン間をまたがり、サイロを解体するため、これは理にかなっています。この方程式に自動化を加えると、バランスは C レベルの方に傾きます。」

EMA が実施した調査によると、自動化はあらゆる業務分野でますます普及しつつあります。人間による制御がなければ、人々は自動化を受け入れることを躊躇します。もちろん、自動化への準備は自動的に行われるわけではありません。それは時間の経過とともに発展します。 AIOps が成功するのは、自動化との組み合わせです。 ”

AIOps の成功

参加者によると、IT とビジネスの同期の向上、IT サービスのパフォーマンスの向上、従業員と顧客のやり取りの強化などが AIOps プロジェクトのメリットの一部です。

要約すると、最も成功した技術的ソリューションであっても、困難がないわけではありません。最も成功している AIOps ユーザーでさえ、技術コスト、データの整合性と可用性、IT の競合、AI に対する不信や懐疑心などの障壁に直面しています。さらに、導入に成功した企業の大多数は、今後 1 年以内に新しい AIOps システムを調査する予定です。

EMA によれば、IT と企業の他の部分とのつながりへの影響は、適切に実行されれば変革をもたらす可能性があるとのことです。その理由の 1 つは、IT とビジネスの連携の進歩がほぼ避けられないためです。自動化は AIOps を正しく実行する上で重要な要素です。しかし、この場合、ビジネスの俊敏性と堅牢な IT サービスの両方が成功に求められる社会では、この組み合わせが生き残りメカニズムになる可能性が高くなります。

AIOps とそれに伴う機械化の議論は非常に単純なので、EMA は AIOps という用語は時間の経過とともに消えていくと予想しています。現時点では新しいこれらの機能は、IT 運用の日常的な一部となるでしょう。一方、AIOps にはまだ長い道のりが残っています。

結論は

AIOps はゲームを変えるテクノロジーであり、目的地ではなく道です。初期導入が成功すれば、デジタル変革の取り組みを支援し、真のビジネス パートナーとしての IT 部門のイメージを高めることができます。今日の企業は、IT テクノロジーが増大する消費者の需要に対応できることを期待しており、そのためには IT チームが AIOps などのテクノロジーを採用する必要があります。企業は、バックエンドのテクノロジーを変更せずに、フロントエンドでデジタルエクスペリエンスを提供することはできません。 AIOps により、IT 運用はハイブリッド クラウド プラットフォーム全体でインフラストラクチャ、アプリケーション、およびサービスを自律的にオーケストレーションできるようになり、複雑な分散環境の管理が容易になります。

<<:  機械学習の時代に神経科学者はいかにして人間の思考を読み取り解読できるか

>>:  米国は自動運転に関する最も厳しい新規制を発行:L2〜L5を完全にカバー、今月30件のテスラ事故が調査された

推薦する

各国の人工知能戦略の解釈

現在、人工知能の開発は引き続き盛んに行われており、新世代の科学技術革命の先駆者となりつつあります。米...

自動運転制御プロセスにおいて解決すべき規制上の問題は何ですか?

自動運転車は自動車の知能化の究極の目標であると広く考えられていますが、自動車技術のさまざまな段階の発...

...

「人工太陽」が正確に放電します! DeepMind、AI制御の核融合で新たなブレークスルーを達成

AI制御の核融合はもうすぐ実現します。ディープマインドは3年間の秘密の研究開発を経て、昨年、AIを使...

ImageNetに匹敵するこのデータセットは、MITによって腹立たしい理由で緊急に削除されました。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

中国の博士が、パラメータのわずか 33% で画像復元フィールドを圧縮するモデル SwinIR を提案しました。

[[421559]]パラメータの数とモデルのパフォーマンスの間には絶対的な関係がありますか?チュー...

ディープラーニングを使用した高速顔モデリング

導入顔のモデリングは、漫画のキャラクターのモデリング、顔のアートのデザイン、リアルタイムの顔の再構築...

NLP入門シリーズ:自然言語処理

[[400034]]この記事はAI Publishingが執筆したWeChatパブリックアカウント「...

AI への移行: 6 月の AI 資金調達活動の概要

情報化時代において、人工知能は急速に社会の変化と発展を推進しています。世界中の研究機関、企業、大学が...

顧客エンゲージメントにおける 5 つの主要な AI トレンド

クラウド通信および顧客エンゲージメント プラットフォームである Twilio が発表した新しい調査レ...

機械学習アルゴリズムは簡単に詐欺を検出できるので、詐欺を恐れる必要はありません。

実のところ、誰もが詐欺防止を必要としているわけではありません。金融機関が最新の犯罪手法に追いつこうと...

...

自動運転車は歩行者に意図を伝えることができるか?

広い道路を安全に横断するかどうかを判断するには、歩行者と運転者の間の社会的合図とコミュニケーションが...