企業による IT 運用における人工知能の使用は AIOps として知られています。 AIOps は、ハイブリッド、流動的、分散型、コンポーネント化された IT インフラストラクチャの監視と制御に不可欠になります。 AIOps により、IT 運用チームと DevOps チームは IT データをアルゴリズム的に分析してよりスマートかつ迅速に運用できるようになり、ビジネス運用や消費者に損害が及ぶ前にデジタル サービスの問題をより迅速に発見して解決できるようになります。
企業の IT 運用チームは、AIOps を使用して、最新の IT インフラストラクチャによって生成される膨大な複雑さと量のデータを管理し、停止を防ぎ、稼働時間を維持し、継続的に高品質のサービスを実現できます。 AIOps は、IT をデジタル変革活動の中心に据えることで、企業が現代のビジネス ニーズに合わせたスピードで業務を遂行できるようにします。 AIOps はどのように機能しますか?すべての AIOps 製品が同じように作られているわけではありません。企業はこれをスタンドアロン インフラストラクチャとしてインストールし、すべての IT 監視ソースからデータを取り込み、そこから最大限の価値を引き出すための中心的な対話システムとして機能する必要があります。 企業が IT 運用監視の 5 つの重要な側面を完全に自動化および簡素化するプラットフォームを強化するために使用できるアプローチとアルゴリズムは 5 つあります。
AIOps を成功に導く 4 つのステップ(1)初期のユースケースを慎重に選択する デジタル化の候補は数多くありますが (たとえば、BMC Services & Consulting の専門家は、自社の製品ラインと、キャンペーン制作、サービス管理、機械化の 3 つの機能を組み合わせて、優れたビジネス定義ソリューションを提供することで、多くのクライアントを支援してきました)、デジタル変革を最大限に実現するには、達成可能で実用的なものに焦点を当てることが重要です。現在の AI 開発レベルを考えると、多くのお客様がまず基本的な AIOps ユースケースに焦点を当てていますが、これはより複雑なユースケースの構成要素としても使用できます。 (2)成功のための新たな戦略の採用 AIOps を導入するには、テクノロジーだけでなく、新しい役割、手順、データ戦略の実装も必要です。ほとんどの企業で AIOps を効果的に導入するには、導入に関わるテクノロジーではなくデータ ソースに重点を置く再編成が必要になることが多いため、文化的な変化が必要です。 (3)コア能力の開発 IT チームは AIOps を採用することで模範を示し、他のデジタル変革テクノロジーと同様の基礎機能を構築できます。 (4)提供価値の追跡 IT 部門は、デジタル変革の取り組みを成功させるために、AIOps の導入によって達成されるビジネス価値を実証する必要があります。カスタマー サクセスでは、統一された正式なビジネス価値データベースを作成することで、クライアントのビジネス価値の監視をサポートします。この値は、修復時間 (MTTR) の短縮など、ビジネス価値データベース内のより広範な組織目標に結び付ける必要があります。 AIOps の推進要因AIOps の導入を推進する草の根運動は存在しないようです。 「AIOps は CIO が主導し、ITOps がすぐ後に続きます」と業界の専門家であるオコネル氏は言います。「AIOps は本質的にドメイン間をまたがり、サイロを解体するため、これは理にかなっています。この方程式に自動化を加えると、バランスは C レベルの方に傾きます。」 EMA が実施した調査によると、自動化はあらゆる業務分野でますます普及しつつあります。人間による制御がなければ、人々は自動化を受け入れることを躊躇します。もちろん、自動化への準備は自動的に行われるわけではありません。それは時間の経過とともに発展します。 AIOps が成功するのは、自動化との組み合わせです。 ” AIOps の成功参加者によると、IT とビジネスの同期の向上、IT サービスのパフォーマンスの向上、従業員と顧客のやり取りの強化などが AIOps プロジェクトのメリットの一部です。 要約すると、最も成功した技術的ソリューションであっても、困難がないわけではありません。最も成功している AIOps ユーザーでさえ、技術コスト、データの整合性と可用性、IT の競合、AI に対する不信や懐疑心などの障壁に直面しています。さらに、導入に成功した企業の大多数は、今後 1 年以内に新しい AIOps システムを調査する予定です。 EMA によれば、IT と企業の他の部分とのつながりへの影響は、適切に実行されれば変革をもたらす可能性があるとのことです。その理由の 1 つは、IT とビジネスの連携の進歩がほぼ避けられないためです。自動化は AIOps を正しく実行する上で重要な要素です。しかし、この場合、ビジネスの俊敏性と堅牢な IT サービスの両方が成功に求められる社会では、この組み合わせが生き残りメカニズムになる可能性が高くなります。 AIOps とそれに伴う機械化の議論は非常に単純なので、EMA は AIOps という用語は時間の経過とともに消えていくと予想しています。現時点では新しいこれらの機能は、IT 運用の日常的な一部となるでしょう。一方、AIOps にはまだ長い道のりが残っています。 結論はAIOps はゲームを変えるテクノロジーであり、目的地ではなく道です。初期導入が成功すれば、デジタル変革の取り組みを支援し、真のビジネス パートナーとしての IT 部門のイメージを高めることができます。今日の企業は、IT テクノロジーが増大する消費者の需要に対応できることを期待しており、そのためには IT チームが AIOps などのテクノロジーを採用する必要があります。企業は、バックエンドのテクノロジーを変更せずに、フロントエンドでデジタルエクスペリエンスを提供することはできません。 AIOps により、IT 運用はハイブリッド クラウド プラットフォーム全体でインフラストラクチャ、アプリケーション、およびサービスを自律的にオーケストレーションできるようになり、複雑な分散環境の管理が容易になります。 |
<<: 機械学習の時代に神経科学者はいかにして人間の思考を読み取り解読できるか
>>: 米国は自動運転に関する最も厳しい新規制を発行:L2〜L5を完全にカバー、今月30件のテスラ事故が調査された
【51CTO.comオリジナル記事】 100年前、シュテファン・ツヴァイクは彼の有名な著作「星...
既存の大規模言語モデル、画像生成モデルなどは、少数のモーダルデータに対してのみ動作し、人間のように物...
こんにちは、ルガです。今日は、人工知能エコシステムの中核技術である AIGC (「生成型人工知能」の...
機械学習は、自動化と異常な動作の検出を通じて、よりスケーラブルかつ効率的に IoT デバイスを保護す...
11月13日〜14日、江蘇省人工知能学会、ファーウェイ端末クラウドサービス、ファーウェイ南京研究所が...
6月19日、MetaのCEOマーク・ザッカーバーグ氏は人工知能の分野に多額の投資を行っていたが、人...
1. 因果修正の背景1. 逸脱の発生推奨システムは、収集されたデータに基づいて推奨モデルをトレーニン...
米国のセキュリティサービスプロバイダーRSAは昨日、同社が米国国家安全保障局(NSA)と協力して暗号...
[[271752]]画像出典: Qilu.com一つの火、二本の涙。 7月18日午前10時半頃(現...
年収100万の仕事に就くことを夢見たことがありますか?人工知能業界に参入して、あなたの夢を現実にしま...