自分だけのデジタルヒューマンを開発しよう、FACEGOODが音声駆動表現技術をオープンソース化

自分だけのデジタルヒューマンを開発しよう、FACEGOODが音声駆動表現技術をオープンソース化


現在、メタバースのトレンドの下、AIデジタルヒューマンもエンターテインメント、サービス、教育、マーケティングなど多くの分野に関わり始めています。市場に出回っている AI デジタルヒューマンには、仮想アシスタント、仮想ツアーガイド、仮想カスタマーサービスなどの機能的 AI デジタルヒューマン、仮想パートナー、仮想家族などのコンパニオン AI デジタルヒューマン、仮想アンカー、仮想アイドル、仮想教師、仮想医師、仮想ショッピングガイドなどのソーシャル AI デジタルヒューマンが含まれます。

浦東発展銀行の銀行業界初のデジタル従業員、シャオ・プー

Huya AI デジタルヒューマン ワンユ

Sohu News ClientとSogouが立ち上げた初の有名人「AIデジタルヒューマン」キャスター。

仮想デジタルヒューマンのマルチドメイン浸透を実現し、より多くのAIデジタルヒューマンシナリオを実装するために、 FACEGOODはAI仮想デジタルヒューマンのコアアルゴリズムである音声駆動リップシンクアルゴリズム技術を正式にオープンソース化することを決定しました。この技術がオープンソース化されると、AIデジタルヒューマンの開発ハードルが大幅に下がります

プロジェクトアドレス: https://github.com/FACEGOOD/Audio2Face

プロジェクトの背景

2019年、第10回中国国際ニューメディア短編映画祭の組織委員会とFACEGOODが共同で、陸川監督のAIデジタルヒューマンを発表しました。

陸川監督のAIデジタルヒューマンイメージ

観客はAIデジタルLu Chuanと直接対面して交流することができ、仮想空間と現実空間の間の次元の壁を打ち破るリアルタイムでリアルなコミュニケーションとインタラクティブな体験をもたらします。リアルタイムのインタラクティブ効果を実現するために、FACEGOOD は音声から表情アニメーションへのリアルタイム変換を実現するデジタルヒューマンリアルタイム音声インタラクションシステムを開発しました。

今日、FACEGOOD は音声駆動表現セット全体の技術コードをオープンソース化し、デジタル ヒューマン開発者に無料で提供することを決定しました。

技術通訳

この技術は、音声を表情ブレンドシェイプアニメーションにリアルタイムで変換できます。これを行う理由は、現在の業界では、BSを使用してデジタル画像のアニメーション表現を駆動することが依然として主流であり、アニメーションアーティストが最終的なアニメーション出力に最も芸術的な調整を加えるのに便利であり、送信されるデータ量が少なく、異なるデジタル画像間でアニメーションを転送するのに便利であるなどです。

FACEGOOD は、これらの実際の制作ニーズに基づいて、入力データと出力データに適切な調整を加えました。サウンド データに対応するラベルは、モデル アニメーションのポイント クラウド データではなく、モデル アニメーションのブレンドシェイプ ウェイトになりました。最終的な使用プロセスを以下の図 1 に示します。

上記のプロセスでは、 FACEGOODが主にAudio2Face部分を完成させ、ASRとTTSはAISpiechインテリジェントロボットによって完成されます。自分の音声や第三者の音声を使用する場合は、ASR と TTS を自分で置き換えることができます。

もちろん、 FACEGOOD Audio2face部分は、自分の好みに合わせて再トレーニングすることもできます。例えば、自分の声や他の種類の声、またはFACEGOODが使用しているものと異なるモデルバインディングを運転データとして使用したい場合は、下記のプロセスに従って、自分専用のアニメーション運転アルゴリズムモデルトレーニングを完了することができます

では、Audio2Face のフレームワークとは何でしょうか?独自のトレーニングデータをどのように作成しますか?詳細は以下の図 2 に示されています。

従来のニューラル ネットワーク モデルのトレーニングは、データの収集と生成、データの前処理、データ モデルのトレーニングという 3 つの段階に大まかに分けられます。


  • 最初の段階はデータの収集と生成です。ここには主にサウンドデータとサウンドに対応したアニメーションデータの2種類のデータがあります。音声データは主に中国語のアルファベットの発音といくつかの特殊な破裂音を記録しており、発音付きのテキストを可能な限り多く収録しています。アニメーション データは、録音した音声データを Maya にインポートし、独自のバインディングに従ってモデルの顔の特徴に応じて対応する発音アニメーションを作成します。
  • 第 2 段階では、主に LPC を介してサウンド データを処理し、サウンド データをアニメーションに対応するフレーム データに分割し、Maya アニメーション フレーム データをエクスポートします。
  • 3 番目の段階では、処理されたデータをニューラル ネットワークの入力として使用し、損失関数が収束するまでトレーニングします。




<<:  IDC: 2024年までにIoTシステムの約20%が人工知能をサポートすると予想

>>:  量子コンピューティングの画期的な論文3本がネイチャーの表紙に登場:忠実度は99%を超え、実用レベルに到達

ブログ    

推薦する

米空軍、戦闘機で人工知能をテスト

人工知能は戦闘機を効果的に操縦できるのか?米空軍は、コードネームXQ-58ヴァルキリーという実験機で...

今後の企業イノベーションを牽引する10の優れたテクノロジー

エンタープライズ テクノロジーの将来は、業界を変えるほどの大きな革新をもたらすでしょう。 5G から...

人工知能は住宅ローン業界に大変革をもたらす

研究機関の推計によると、新型コロナウイルスの流行により、2020年の世界経済は約3%縮小する見通しだ...

オペレーティング システムに関して、一般的に使用されているスケジューリング アルゴリズムをいくつ知っていますか?

オペレーティング システムには多くのスケジューリング アルゴリズムがあり、ジョブ スケジューリングに...

人工知能の新たな発展動向の分析

過去 30 年間で、情報技術は、電子商取引、インターネット化、モビリティ、ソーシャル化、クラウド コ...

顔認証でお金を引き出すのは安全ですか?

広州市のある商業銀行は最近、顔認証引き出し機能を備えたATMを導入し、利用者が銀行カードを持っていな...

AI を活用することで、銀行は年間 1 兆ドルの追加収益を得ることができる | マッキンゼーの最新調査レポート

AI を活用して財務管理や投資を行いたいと考えていますか? [[351941]]好むと好まざるとにか...

ディープラーニングを超える新しいAIプログラミング言語Genについて1つの記事で学びましょう

AI の急速な発展は多くの人々の学習意欲をかき立てていますが、初心者にとっては大量の手動プログラミン...

...

...

分散型AIで製造業を強化

家庭内の新しい仮想アシスタントから、受信トレイから迷惑メールを削除するスパムフィルターまで、人工知能...

本当に滑らか: 浙江大学、ETH チューリッヒ、CityU が共同で開発した 3D ヘア モデリングの新しい手法、NeuralHDHair

近年、バーチャルデジタルヒューマン業界は大変人気が高まっており、あらゆる分野の人々が独自のデジタルヒ...

...

転移学習の限界を突破せよ! Googleが新しいNLPモデル「T5」を提案、複数のベンチマークでSOTAに到達

[[316154]]過去数年間、転移学習は NLP 分野に実りある成果をもたらし、新たな発展の波を...

人工知能のトップ10の応用シナリオ

序文人工知能ブームは世界中を席巻し、数え切れないほどの人材が人工知能業界に集まっています。機械翻訳、...