ネイチャーの表紙に掲載されているこのグループ学習は、中央コーディネーターを必要とせず、連合学習よりも優れています。

ネイチャーの表紙に掲載されているこのグループ学習は、中央コーディネーターを必要とせず、連合学習よりも優れています。

[[406170]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

現在、いくつかの病気の診断においては、AIの精度が医師の精度を上回っています

信頼性の高い診断結果の背後には、膨大なデータセットに基づく機械学習があります。

しかし、現実には、トレーニングに利用できる医療データは非常に分散しています。世界中からデータを収集しようとすると、データの所有権、プライバシー、機密性、セキュリティ、さらにはデータ独占の脅威に関する懸念が生じます...

フェデレーテッド ラーニングなどの一般的に使用される方法は、上記の問題の一部を解決できますが、モデルのパラメータは「中央コーディネーター」によって処理されるため、「電力」が集中し、スター アーキテクチャによってフォールト トレランスも低下します。

良い解決策はないのでしょうか?

はい、Nature の表紙に、 Swarm Learning (SL) と呼ばれる新しい機械学習手法が掲載されました。

このアプローチは、エッジコンピューティング、ブロックチェーンベースのピアツーピアネットワーク、そして「中央コーディネーター」の不在を組み合わせ、連合学習を超えて、プライバシー法に違反することなく世界中のあらゆる医療データを統合します。

研究者らは、4つの異種疾患(結核、COVID-19、白血病、肺病変)を用いて、分散データを使用して疾患を診断する群集学習法の実現可能性を検証した。

具体的にどうやって達成するのでしょうか?

グループ学習法は分散型アーキテクチャを採用し、プライベート許可ブロックチェーン技術を使用して実装されます。

Swarm ネットワーク全体は複数の Swarm エッジ ノードで構成され、各ノードはこれらのノードを通じてパラメータを共有します。各ノードは、プライベート データとネットワークによって提供されるモデルを使用して、独自のモデルをトレーニングします。

このアプローチは、プライベート許可ブロックチェーン技術を通じて、データの所有権、セキュリティ、機密性をサポートするセキュリティ対策を提供します。

その中で、参加できるのは事前に承認された参加者のみであり、新しいノードの参加は動的です。参加者は適切な承認措置を通じて識別され、ブロックチェーンのスマートコントラクトを通じて登録され、参加者はモデルを取得してローカルモデルのトレーニングを実行できます。

定義された同期条件を満たすようにローカル モデルがトレーニングされた後でのみ、Swarm API を介してモデル パラメーターを交換でき、新しいトレーニング ラウンドが開始される前に新しいパラメーター構成をマージしてモデルを更新できます。

△ グループ学習と他の機械学習手法のアーキテクチャ比較

したがって、グループ学習法には次のような特徴があります。

  • データ所有者の医療データはローカルに保存できます。
  • 生データを交換する必要がないため、データ トラフィックが削減されます。
  • 高いレベルのデータセキュリティ保護を提供できます。
  • 分散型メンバーのオンボーディングを安全かつ透明かつ公正に行うために中央管理者は必要ありません。
  • すべてのメンバーが同等の権限でパラメータをマージできるようにします。
  • 機械学習モデルを攻撃から保護します。

分散データに基づいて病気の診断機能を開発するこの方法の実現可能性を検証するために、研究者らはこれを使用して 4 つの病気を診断しました。

軽度と重度のCOVID-19を区別し、単一ノードを上回るパフォーマンスを発揮

まず、白血病。

研究者らは、世界中に分散している現実世界の医療センターをシミュレートするために、12,000 を超えるサンプル データ ポイントを個々のノードに「分離」しました。

次に、グループ学習を使用してデータをトレーニングし、未知の患者を診断しました。各ノードのサンプル分布がどのように変化しても、グループ学習法の診断精度は単一ノードの診断精度よりも優れていることがわかりました。

次に、グループ学習を使用して、結核または肺病変の患者を特定しました。結果は同じでした。トレーニング サンプルの数を減らすと、グループ学習の予測効果は低下しましたが、それでも単一のノードよりも優れていました。

流行後、研究者らは新型コロナウイルスの診断におけるグループ学習の有効性もテストした。

結果は、軽度と重度のCOVID-19の区別において群集学習が個々のノードよりも優れていることを示しました。

最後に、研究者らは、分散型学習法としてのグループ学習は、機関間の医療研究における現在のデータ共有モデルに取って代わり、データのプライバシーを確​​保しながらAIがより豊富で包括的なデータを取得するのに役立ち、それによってAIによる病気の診断の精度が向上すると期待されていると述べた。

論文の宛先:
https://www.nature.com/articles/s41586-021-03583-3

GitHub コード:

https://github.com/schultzelab/swarm_learning

<<:  しゃべるアバター!新しいフレームワークLipSync3Dは将来的に動的なリップシンクを可能にするかもしれない

>>:  ベンチャー投資における機械学習の活用方法

ブログ    
ブログ    

推薦する

人気のLlama 2は1週間で15万回以上ダウンロードされ、誰かがRust実装をオープンソース化した。

数日前、Meta は Llama 2 の無料商用バージョンをリリースし、AI コミュニティに大きなセ...

銀行におけるクラウドコンピューティングと人工知能の利点

クラウド コンピューティング プロバイダーは、データを分析し、スキルの低いユーザー (または予算が限...

顔認識技術の原理と応用展望の分析

顔認識技術は人間の顔の特徴に基づいています。まず、入力された顔画像またはビデオ ストリームに顔がある...

人工知能が「骨董品鑑定」の分野に参入、人間の職業に再び影響が及ぶか?

データの「食料」が増え続け、入手が容易になるにつれ、現在の人工知能は機械学習、言語処理、対話機能にお...

将来、人工知能は人類を脅かすのか?人工知能が「暴走」するのを防ぐ6つの戦略

ロボットが人類の脅威にならないようにする6つの戦略ウィル・スミス主演のアメリカ映画「アイ,ロボット」...

...

ChatGPT Enterprise Editionが登場: 史上最強のバージョン、無制限の使用と32kコンテキストを備えた2倍のGPT-4

ChatGPTはリリースされてから9か月が経ちました。この 9 か月間、この驚異的なアプリケーショ...

AIチップのスタートアップ企業が岐路に立つ

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

ターミネータースカイネット?国防総省は、敵の行動を数日前に予測できるAI予測システムGIDEをリリースした

[[415649]]最近、米国防総省は、大量の情報源を分析し、数日後の敵の行動を1分以内に予測し、事...

ウクライナ国防省がAI認識技術を採用、Clearview AIが再び疑問視される

イベント紹介ロイター通信によると、ウクライナ政府省庁は土曜日、クリアビューAIの顔認識技術の使用を開...

2021 年の世界トップ 10 の人工知能アプリケーション

人工知能は、過去 10 年間にわたって年間を通じて最もホットな話題の 1 つとなっています。そして、...

日本の量子コンピューティング戦略:2030年までに量子技術ユーザー1000万人を目指す

量子時代が到来し、世界は安全・安心な暮らしとより良い社会の実現への期待が高まっています。 最近、日本...

「遅れた接客」と批判されたインテリジェント接客の現状とは?

AIや5Gなどの新技術がもたらす変化により、顧客サービスシナリオは多様な変化を遂げており、兆レベル...