ネイチャーの表紙に掲載されているこのグループ学習は、中央コーディネーターを必要とせず、連合学習よりも優れています。

ネイチャーの表紙に掲載されているこのグループ学習は、中央コーディネーターを必要とせず、連合学習よりも優れています。

[[406170]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

現在、いくつかの病気の診断においては、AIの精度が医師の精度を上回っています

信頼性の高い診断結果の背後には、膨大なデータセットに基づく機械学習があります。

しかし、現実には、トレーニングに利用できる医療データは非常に分散しています。世界中からデータを収集しようとすると、データの所有権、プライバシー、機密性、セキュリティ、さらにはデータ独占の脅威に関する懸念が生じます...

フェデレーテッド ラーニングなどの一般的に使用される方法は、上記の問題の一部を解決できますが、モデルのパラメータは「中央コーディネーター」によって処理されるため、「電力」が集中し、スター アーキテクチャによってフォールト トレランスも低下します。

良い解決策はないのでしょうか?

はい、Nature の表紙に、 Swarm Learning (SL) と呼ばれる新しい機械学習手法が掲載されました。

このアプローチは、エッジコンピューティング、ブロックチェーンベースのピアツーピアネットワーク、そして「中央コーディネーター」の不在を組み合わせ、連合学習を超えて、プライバシー法に違反することなく世界中のあらゆる医療データを統合します。

研究者らは、4つの異種疾患(結核、COVID-19、白血病、肺病変)を用いて、分散データを使用して疾患を診断する群集学習法の実現可能性を検証した。

具体的にどうやって達成するのでしょうか?

グループ学習法は分散型アーキテクチャを採用し、プライベート許可ブロックチェーン技術を使用して実装されます。

Swarm ネットワーク全体は複数の Swarm エッジ ノードで構成され、各ノードはこれらのノードを通じてパラメータを共有します。各ノードは、プライベート データとネットワークによって提供されるモデルを使用して、独自のモデルをトレーニングします。

このアプローチは、プライベート許可ブロックチェーン技術を通じて、データの所有権、セキュリティ、機密性をサポートするセキュリティ対策を提供します。

その中で、参加できるのは事前に承認された参加者のみであり、新しいノードの参加は動的です。参加者は適切な承認措置を通じて識別され、ブロックチェーンのスマートコントラクトを通じて登録され、参加者はモデルを取得してローカルモデルのトレーニングを実行できます。

定義された同期条件を満たすようにローカル モデルがトレーニングされた後でのみ、Swarm API を介してモデル パラメーターを交換でき、新しいトレーニング ラウンドが開始される前に新しいパラメーター構成をマージしてモデルを更新できます。

△ グループ学習と他の機械学習手法のアーキテクチャ比較

したがって、グループ学習法には次のような特徴があります。

  • データ所有者の医療データはローカルに保存できます。
  • 生データを交換する必要がないため、データ トラフィックが削減されます。
  • 高いレベルのデータセキュリティ保護を提供できます。
  • 分散型メンバーのオンボーディングを安全かつ透明かつ公正に行うために中央管理者は必要ありません。
  • すべてのメンバーが同等の権限でパラメータをマージできるようにします。
  • 機械学習モデルを攻撃から保護します。

分散データに基づいて病気の診断機能を開発するこの方法の実現可能性を検証するために、研究者らはこれを使用して 4 つの病気を診断しました。

軽度と重度のCOVID-19を区別し、単一ノードを上回るパフォーマンスを発揮

まず、白血病。

研究者らは、世界中に分散している現実世界の医療センターをシミュレートするために、12,000 を超えるサンプル データ ポイントを個々のノードに「分離」しました。

次に、グループ学習を使用してデータをトレーニングし、未知の患者を診断しました。各ノードのサンプル分布がどのように変化しても、グループ学習法の診断精度は単一ノードの診断精度よりも優れていることがわかりました。

次に、グループ学習を使用して、結核または肺病変の患者を特定しました。結果は同じでした。トレーニング サンプルの数を減らすと、グループ学習の予測効果は低下しましたが、それでも単一のノードよりも優れていました。

流行後、研究者らは新型コロナウイルスの診断におけるグループ学習の有効性もテストした。

結果は、軽度と重度のCOVID-19の区別において群集学習が個々のノードよりも優れていることを示しました。

最後に、研究者らは、分散型学習法としてのグループ学習は、機関間の医療研究における現在のデータ共有モデルに取って代わり、データのプライバシーを確​​保しながらAIがより豊富で包括的なデータを取得するのに役立ち、それによってAIによる病気の診断の精度が向上すると期待されていると述べた。

論文の宛先:
https://www.nature.com/articles/s41586-021-03583-3

GitHub コード:

https://github.com/schultzelab/swarm_learning

<<:  しゃべるアバター!新しいフレームワークLipSync3Dは将来的に動的なリップシンクを可能にするかもしれない

>>:  ベンチャー投資における機械学習の活用方法

ブログ    
ブログ    

推薦する

2019 ディープラーニング フレームワーク対決: PyTorch がトップ AI カンファレンスを席巻し、NeurIPS 2019 で再び優勝!

最近、Reddit のホットな投稿が機械学習コミュニティで大きな議論を巻き起こしました。 NeurI...

ハイパーオートメーションはビジネスの未来か?企業にとって何ができるのでしょうか?

ロボティックプロセスオートメーション、人工知能、機械学習などの新しいテクノロジーを組み合わせることで...

...

このAIはマスクをハゲにし、テスラの設計を手伝った

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

国内初の大規模模造品対策訴訟:アリババクラウドが偽造同義千聞アプリを提訴、一審で勝訴

1月16日、中国における大型モデルの偽造品撲滅活動で初の成功事例が発表された。アリババクラウドとアリ...

スマートホーム技術における感情AIの役割

スマートホーム テクノロジーの登場により、私たちが生活空間と関わる方法は大きく変わりました。音声制御...

XiaoIceが11人のAI歌手を一気にリリース:プロの歌手に匹敵するにはたった45日間のトレーニングが必要

11月25日、 XiaoIceフレームワークは11人のAI歌手をリリースし、アシスタント、同僚、親戚...

顔認識はどのようにして顔を認識するのでしょうか?

顔をスキャンして出勤記録を取ったり、顔で支払いをしたり、顔でドアを開けたり、顔をスキャンしながら生活...

AIが死海文書の秘密を解読:筆写者は1人だけではなかった

海外メディアの報道によると、フローニンゲン大学の研究者らが新たな筆跡分析法を開発した。この手法は死海...

烏鎮サミットから10年:呉永明が初めてアリババの新たな変化について言及

ノア著制作:51CTO テクノロジースタック(WeChat ID:blog) 「夜、烏鎮の橋のそばの...

ChatGPT は EDR 検出を回避する変異型マルウェアを作成します

ChatGPTは昨年末のリリース以来、世界中で大きな話題を呼んでいます。しかし、消費者やIT専門家の...

2021年に注目すべき5つのAI関連の仕事スキル

困難な一年であったにもかかわらず、世界中の多くの企業が、ビジネスを最大化するために人工知能(AI)を...

機械学習を利用してデータベースの運用と保守の問題を解決します

著者についてPing An Technology のデータベース チームの運用保守開発エンジニアであ...

再ハッシュ: ブルームフィルタアルゴリズムの実装原理を理解する

[[385658]]この記事では、広く使用されているアルゴリズムである「ブルーム フィルター アルゴ...

多国籍食品流通会社Sysco CIDO:当社の成長の秘訣はIT中心

トム・ペック氏がCOVID-19パンデミックの真っ只中にシスコに入社したとき、彼の主な目標は世界最大...