グラフディープラーニングで複雑な研究​​タイプのタスクを実装するのは、あまりにも面倒ですか?この新しいツールキットは、

グラフディープラーニングで複雑な研究​​タイプのタスクを実装するのは、あまりにも面倒ですか?この新しいツールキットは、

ディープラーニングは、AI分野で最も注目されている分野の1つです。現在、PyGやDGLなどの主流のグラフディープラーニングフレームワークは、主にグラフディープラーニングの基本的な操作とモデルを実装しており、複雑なグラフディープラーニングの研究課題に対処するのは困難です。最近、テキサス A&M 大学の Shuiwang Ji 教授のチームは、グラフ生成、グラフ自己教師学習、グラフニューラルネットワークの解釈可能性、3D グラフディープラーニングタスクなど、複雑な研究​​タスク向けの初のスケーラブルなグラフディープラーニングツールキットを開発しました。このツールキットの目的は、研究者が複雑なグラフディープラーニングタスクのアルゴリズム開発において、共通のデータセットと評価指標を使用して共通のベンチマークと比較しやすくすることです。

グラフ ディープラーニングは、豊富なグラフ構造データからの学習においてその有効性を実証しています。また、新薬の発見、ソーシャル ネットワーク、物理シミュレーションなど、多くの問題において大きな進歩が遂げられています。多くのグラフ ディープラーニング フレームワーク (PyG、DGL など) は、主に基本的なグラフ ディープラーニング モジュールと、ノード分類やグラフ分類などの基本タスクの実装に重点を置いています。しかし、グラフ生成やグラフニューラルネットワークの解釈可能性などの複雑なタスクの場合、研究者はアルゴリズムを実装し、それをベンチマークモデルと比較するために依然として多大な労力を費やす必要があります。

この問題を解決するために、テキサス A&M 大学の Shuiwang Ji 教授が率いる DIVE (データ統合、視覚化、探索) 研究所は、複雑な研究​​タスク向けの初のグラフ ディープラーニング ツールキット DIG (Dive into Graphs) をオープンソース化しました。ツールキットは、研究室の 16 人のチーム (博士課程の学生 14 人、学部生 1 人、指導者 1 人) によって 1 年かけて完成されました。 PyG や DGL などのグラフ ニューラル ネットワーク フレームワークとは異なり、DIG は、現在人気の高い複雑なグラフ ディープラーニング研究タスク向けに、より使いやすく、より高速で、よりスケーラブルなアルゴリズム開発および比較研究プラットフォームを提供することに重点を置いています。

現在、DIG ツールキットは、グラフ生成、グラフ自己教師学習、グラフニューラルネットワークの解釈可能性、3D グラフディープラーニングの 4 つの研究方向をサポートしています。 DIG は、各分野に対して、共通かつ拡張可能なデータ インターフェイス、共通アルゴリズム、評価標準の実装を提供します。

要約すると、DIG は研究者のアルゴリズム開発とベンチマーク モデルとの実験比較を大幅に促進します。

  • 論文アドレス: https://arxiv.org/abs/2103.12608

  • プロジェクトアドレス: https://github.com/divelab/DIG

現在、DIG は 4 つの研究方向で 18 のアルゴリズム、33 のデータセット、7 種類の評価指標をカバーしています。汎用的で拡張可能な実装に基づいて、将来的にはさらに多くの指示とアルゴリズムを DIG に統合できます。ツールキットの全体的な構造を下図に示します。

DIG は 4 つの主要な方向をカバーします。

グラフ生成: グラフ生成アルゴリズムは、指定されたグラフ データ セットに基づいて新しいグラフを生成する方法を研究します。グラフ生成タスクは、医薬品や材料の開発において潜在的に重要な用途を持っています。そのため、DIG では分子グラフを生成できるディープラーニング アルゴリズムを主に検討します。同時に、DIG は、ランダム生成、分子特性の最適化、制約付き分子特性の最適化を評価するための関連指標も実装します。

グラフ上の自己教師学習: 自己教師学習の研究は最近、グラフ データにまで拡張され、特定の自己教師タスクを使用することで、モデルがより効果的なグラフ機能表現を取得できるようになりました。現在、DIG は主に対照学習に基づく共通グラフ自己監督アルゴリズムを実装し、ノード分類とグラフ分類のデータ インターフェースと評価指標を提供しています。

グラフ ニューラル ネットワークの解釈可能性: グラフ ニューラル ネットワークが実際のアプリケーションに導入されるケースが増えるにつれて、モデルをより深く理解するために、グラフ ニューラル ネットワークの解釈可能性に関する研究が重要になってきました。一般的なグラフ ニューラル ネットワーク解釈アルゴリズムが DIG に実装されています。 DIG 開発者は、一般的に使用されるベンチマーク データセットと評価メトリックに加えて、解釈可能性タスク用のテキスト データから人間が理解できるグラフ データセットも構築し、グラフ ニューラル ネットワークの解釈可能性に関するその後の研究を大幅に促進しました。

3D グラフ ディープラーニング: 3D グラフ ネットワークとは、ノードが 3 次元の位置情報を持つグラフ ネットワーク構造を指します。たとえば、分子内の各原子には相対的な 3D 位置があります。グラフ構造における3D位置情報は、グラフネットワークの表現能力を向上させる上で重要な役割を果たすと考えられます。 DIG は、3 つの最新の 3D グラフ ディープラーニング アルゴリズムを 3DGN フレームワークに統合し、統一された実装を提供します。また、一般的な 3D 分子データセット用の統一されたインターフェースと評価メトリックも実装します。

主要な設計ガイドライン

共通実装: DIG には、各研究方向のデータ インターフェイスと評価方法の共通実装があります。これにより、DIG は標準化されたテスト プラットフォームとして機能できるようになります。さらに、ある観点から統一できるアルゴリズムについては、DIG は一般的なアルゴリズム実装も提供します。たとえば、3D グラフのディープラーニング用の 3DGN フレームワークや、グラフの自己教師学習用の比較モデル フレームワークなどです。

スケーラビリティとカスタマイズ性: 共通の実装により、研究者は新しいデータセット、アルゴリズム、評価基準を簡単に統合できます。さらに、ユーザーはデータインターフェースと評価方法を柔軟に選択して実験をカスタマイズできます。したがって、DIG は、研究者が新しいアルゴリズムを実装し、ベンチマーク アルゴリズムとの実験的な比較を実行するためのプラットフォームとして使用できます。

<<:  練習問題をやるのが苦痛すぎる場合はどうすればいいですか?このアルゴリズムベースは初心者向けにカスタマイズされており、アニメーションが付属しています

>>:  Pytorch モデルのトレーニングを最適化するためのヒント

ブログ    
ブログ    
ブログ    

推薦する

ビッグデータと AI を現代の教育とどのように組み合わせることができるでしょうか?

転載は歓迎しますが、署名し、「劉鵬の未来を見つめる」公開アカウントからの転載であることを明記し、この...

プログラマーが夜遅くにPythonでニューラルネットワークを実行し、中学生のようにデスクランプを消す

[[271670]]一度ベッドに入ったら決して起き上がりたくない人にとって、電気を消すことは寝る前の...

AIがスマートホームとどのように統合されるか

AI テクノロジーがスマート ホームをどのように改善しているかについて学びます。人工知能とは何ですか...

マシンビジョン: 2D ビジョンと 3D ビジョンのどちらを選択するか?

マシンビジョンは、人工知能の重要な分野として、今日最も注目されているテクノロジーの 1 つとなってい...

過剰に防御的?モスクワのバス運転手は中国人乗客の身元を手動で確認し、顔認識システムの使用も許可されている。

最近、モスクワのバス運転手たちは少々パニックになっている。チャットグループでは、「バスの中でアジア人...

テクノロジーリーダーはAIGCの長所と短所をどう評価しているか

AIGC は、現代の偉大な技術的進歩の 1 つとして広く認められています。 OpenAI の Cha...

人工知能は最終的に人間に取って代わるのでしょうか?現時点では、あらゆる面で人間を超えることは難しいでしょう。

ここ数年、人工知能技術が徐々に発展するにつれ、社会の中で人工知能に対するさまざまな見方が現れ始めまし...

マルチモーダル世界モデルで未来を予測!カリフォルニア大学バークレー校の新しいAIエージェントは人間の言語を正確に理解し、SOTAを刷新する

現在、強化学習ベースのエージェントは、「青いレンガを拾う」などの指示を簡単に実行できます。しかし、ほ...

OpenAIは、テキストを使用してユーザーの感情を検出できる教師なし感情ニューロンを「巧みに」発見した。

OpenAIは4月7日、公式サイトで最新の研究結果を発表し、感情表現を効率的に学習し、現在Amaz...

顔認識システムはすごいですね!チケット転売業者が体調を崩して入院、警戒を呼び起こす

最近、北京同仁病院の警報システムが作動し、職員は北京天壇病院で活動していたチケット転売業者が北京同仁...

人工知能を学ぶには、このコア技術を知っておく必要があります!

自然言語処理 (NLP) は、コンピューター サイエンスと人工知能の分野における重要な方向性です。自...

人工知能とはいったい何でしょうか?たぶん多くの人がこれを知らないでしょう!

今後10年間で、翻訳者、ジャーナリスト、アシスタント、警備員、運転手、販売員、カスタマーサービス、ト...

AIアプリケーションはコストを2倍以上にする

人工知能の登場により、多くの企業がこの分野の研究開発に多額の資金を投資し、一部の企業は成果を上げ始め...

673本の論文を要約し、UIUCなどが20ヶ月で完成させた信頼性の高い機械学習レビューを発表

少し前、UIUC と南洋理工大学の 3 人の研究者が 20 か月かけて 673 本の論文を研究し、信...

清華大学、マイクロソフトなど大学がリマインダーエンジニアを排除? LLMと進化的アルゴリズムを組み合わせて強力なプロンプト最適化ツールを作成する

LLM の機能と従来のアルゴリズムを組み合わせることで、どのような火花が生まれるのでしょうか?清華大...