サンディエゴ大学の博士が、ディープフェイク検出器は破られないものではないことを初めて証明した。

サンディエゴ大学の博士が、ディープフェイク検出器は破られないものではないことを初めて証明した。

研究者らは、敵対的サンプルと呼ばれる入力を各ビデオフレームに挿入することで、検出器を破ることができることを示した。敵対的サンプルとは、機械学習モデルなどの AI システムに間違いを起こさせる、わずかに操作された入力です。さらに、チームは、ビデオが圧縮された後でも攻撃がまだ機能することを発見しました。

カリフォルニア大学サンディエゴ校のコンピュータ工学博士課程の学生、シェジーン・フセインは次のように語った。

私たちの研究は、ディープフェイク検出器への攻撃が現実世界の脅威となる可能性があることを示しており、さらに驚くべきことに、検出器が使用する機械学習モデルの内部の仕組みを知らなくても、非常に堅牢な敵対的サンプルを作成できることを実証しています。

ディープフェイクでは、被写体の顔が加工され、実際には起こらなかった出来事を真似した映像が作られる。

したがって、典型的なディープフェイク検出器は、ビデオ内の人物の顔に焦点を当てています。まず顔を追跡し、次に切り取られた顔データをニューラル ネットワークに渡して、顔が本物か偽物かを判断します。

たとえば、ディープフェイクではまばたきがうまく再現されないため、検出器は偽物かどうかを判断する方法として目の動きに注目します。最先端の「ディープフェイク検出器」は、機械学習モデルを利用して偽の動画を識別します。

研究者らは、ソーシャルメディアプラットフォーム上での虚偽の動画の広範な拡散が世界中で大きな懸念を引き起こし、特にメディアの信頼性に影響を与えていると指摘した。

「攻撃者が検出システムについてある程度の知識を持っていれば、検出器の死角を狙った入力信号を作成し、それを迂回することができる」と、論文のもう一人の共著者でカリフォルニア大学サンディエゴ校のコンピューターサイエンス専攻の学生、パース・ニーカラ氏は述べた。

研究者たちは、ビデオフレーム内のそれぞれの顔に対して敵対的サンプルを作成した。しかし、ビデオの圧縮やサイズ変更などの標準的な操作では通常、画像から敵対的サンプルが削除されますが、これらのサンプルはそれらのプロセスに耐えられるように構築されています。

攻撃アルゴリズムは、モデルが画像を本物か偽物かにランク付けするために使用する一連の入力変換を推定することによってこれを実行します。そこから、この推定値を使用して、圧縮および解凍後も敵対的画像が有効なままになるように画像を変換します。

ディープフェイク検出ツール XceptionNet は、研究者が作成した敵対的な動画を本物として分類します。

修正された顔のバージョンがすべてのビデオ フレームに挿入され、ビデオ内のすべてのフレームに対してこのプロセスが繰り返されて、ディープフェイク ビデオが作成されます。この攻撃は、顔だけでなくビデオフレーム全体を操作する検出器にも適用できます。

高い成功率

研究者らは、2 つのシナリオで攻撃をテストしました。1 つは、攻撃者が顔抽出パイプラインと分類モデルの構造とパラメータを含む検出器モデルに完全にアクセスできるシナリオ、もう 1 つは、攻撃者が機械学習モデルにクエリを実行して、フレームが本物か偽物かに分類される確率を計算するシナリオです。

最初のケースでは、非圧縮ビデオへの攻撃は 99 パーセント以上の確率で成功しました。圧縮されたビデオの場合、この比率は 84.96% になります。 2 番目のケースでは、攻撃は非圧縮ビデオでは 86.43 パーセント成功し、圧縮ビデオでは 78.33 パーセント成功しました。

これは最先端のディープフェイク検出器に対する攻撃が成功したことを実証した最初の研究です。

「これらのディープフェイク検出器を実際に使用するには、これらの防御策を知っていて意図的にそれを破ろうとする適応型の敵に対して評価する必要があると考えています」と研究者らは述べています。「敵が検出器を完全に、あるいは部分的にでも知っていれば、現在の最先端のディープフェイク検出方法は簡単に回避できます。」

検出器を改善するために、研究者らは敵対的トレーニングに似たアプローチも推奨しています。トレーニング中、適応型の敵対者は、現在の最先端の検出器を回避できる新しいディープフェイクの結果を生成し続け、検出器は新しいディープフェイクの結果を検出するために改善し続けます。

<<:  ヘルスケアにおける人工知能の課題にどう対処するか

>>:  警察が採用したボストン・ダイナミクスの犬たちは、感情のない「監視ツール」になるのだろうか?

ブログ    
ブログ    

推薦する

テクノロジー | 12人の専門家が2021年の人工知能の発展動向について語る

2020年が終わり、2021年が始まりました!私たちは最近、人工知能の専門家たちにインタビューし、2...

人工知能が物流の自動化を変える

[[423132]]自動化では、テクノロジーを利用して、さまざまなタスクにおける人間の労力を強化しま...

AIが達成できること

半世紀にわたり、人工知能はコンピュータ開発の夢でしたが、常に手の届かないところにありました。しかし、...

データ構造とアルゴリズム、グラフをトラバースする2つの方法を理解する

[[331362]] 1 はじめにトラバーサルとは、特定のノードから開始し、特定の検索ルートに従って...

ロボット産業発展の鍵は人材にある

製造強国戦略の徹底的な実行の重要な部分として、ロボット産業はますます多くの人々の注目を集めています。...

米シンクタンクの報告書:中国のAI人材流出、大半が米国へ

中国のAI研究者の数は過去10年間で10倍に増加したが、そのほとんどは海外、主に米国に居住している。...

...

...

人工知能は業界の生態系を変え、銀行支店を減らし、スマートカードを活用する

多くの注意深い国民は、気づかないうちに銀行支店の数が減少していることに気づいています。予備統計による...

MIT、悪意のあるAI編集から画像を保護する「PhotoGuard」技術を開発

7月25日、AIベースのディープフェイク技術が進化を続ける中、人間が肉眼で「どのコンテンツがAIによ...

ビデオ通話の低品質なビデオとはおさらば: NVIDIA の新しいアルゴリズムはトラフィックを最大 90% 圧縮できます

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能は伝染病との戦いに活用できるのか?

これまで、私たちは人工知能が医療業界にどのように貢献するかについて議論してきました。新型コロナウイル...

IDCは、米国の人工知能への支出が2025年までに倍増すると予測している

米国のAIへの支出は2025年までに1,200億ドルに増加するだろう。 2021年から2025年の予...