研究者は人工知能を使って、膨大なデータに隠された異常をリアルタイムで発見する

研究者は人工知能を使って、膨大なデータに隠された異常をリアルタイムで発見する

全国的な送電網の障害を特定することは、巨大な干し草の山から針を見つけるようなものです。米国全土に設置された数十万の相互接続されたセンサーが、電流、電圧、その他の重要な情報に関するデータをリアルタイムで、多くの場合 1 秒あたり複数回取得します。 MIT IBM Watson AI ラボの研究者たちは、これらのデータ ストリーム内の異常をリアルタイムで自動的に識別する計算効率の高い方法を考案しました。​​

彼らは、グリッドの相互接続性をモデル化することを学習した AI アプローチが、他の一般的な手法よりもこれらの障害を検出するのにはるかに優れていることを実証しました。彼らが開発した機械学習モデルは、トレーニングに電力網の異常に関する注釈付きデータを必要としないため、高品質のラベル付きデータセットの入手が難しい現実世界への適用が容易になります。このモデルは柔軟性も高く、交通監視システムなど、多数の接続されたセンサーがデータを収集して報告する他の状況にも適用できます。たとえば、交通のボトルネックを特定したり、交通渋滞がどのように関連しているかを明らかにしたりすることができます。

研究者らはまず、異常を、突然の電圧上昇など、発生確率が低い事象と定義した。彼らはグリッドデータを確率分布として捉えたので、確率密度を推定できればデータセット内の低密度値を特定できるはずです。発生する可能性が最も低いデータ ポイントは外れ値に相当します。

これらの確率を推定することは簡単な作業ではありません。特に、各サンプルは複数の時系列をキャプチャし、各時系列は時間の経過とともに記録された多次元データ ポイントのセットであるためです。さらに、このすべてのデータをキャプチャするセンサーは条件付きです。つまり、特定の構成で接続されており、1 つのセンサーが他のセンサーに影響を及ぼすことがあります。

データの複雑な条件付き確率分布を学習するために、研究者らは、サンプルの確率密度を推定するのに特に効果的な、正規化フローと呼ばれる特殊なタイプのディープラーニング モデルを使用しました。彼らは、異なるセンサー間の複雑な因果構造を学習できるベイジアンネットワークと呼ばれるグラフの一種を使用して、この正規化されたフローモデルを拡張しました。このグラフ構造により、研究者はデータ内のパターンを確認し、異常をより正確に推定できるようになります。

<<:  生成型人工知能とは何かについて話しましょう

>>:  ニューラル放射フィールドはポイントベースで、NeRFよりも30倍高速なトレーニング速度と優れたレンダリング品質を備えています。

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

2021 年に企業に影響を与える自然言語処理のトレンド

[[384737]] [51CTO.com クイック翻訳] 昨今、自然言語技術は企業でますます活用さ...

AIはデジタル変革の失敗から学ぶ必要がある

1 月に IBM は、デジタル トランスフォーメーションが予測された 150% ではなく -5% ~...

...

さようなら、宅配便業者さん!

この時代の変化のスピードは想像を絶します!次から次へと生み出される想像力豊かな革新は、目を見張るほど...

...

...

中国チームが最優秀論文賞と最優秀システム論文賞を受賞し、CoRLの受賞論文が発表されました。

CoRL は 2017 年に初めて開催されて以来、ロボット工学と機械学習の交差点における世界トップ...

マイクロソフト、言語モデルの推論機能を向上させるXOT方式を発表

マイクロソフトは11月15日、Google DeepMindのAlphaZeroにヒントを得て、コン...

これら5つのコアテクノロジーを理解すれば、人工知能はもうあなたの身近な存在に

人工知能は現在最も注目されている産業であり、将来的にはロボット、スマートセンサー、ウェアラブルデバイ...

コンピュータビジョンディープラーニングにおける8つのよくあるバグ

コンピューター ビジョンのディープラーニングでよくある 8 つのバグをまとめました。誰もが多かれ少な...

...

マイクロソフトのGitHub Copilotサービスは大きな損失を被っていると報じられており、同社は独自のAIチップを開発してNvidiaに対抗する予定だ

10月10日のニュース、過去1年間、生成AIの流行は多くの企業に莫大な利益をもたらしました。最大の受...

人工知能はメタバースのビジョンの実現に役立つでしょうか?

現在、メタバースの分野は、誇大宣伝と新規プロジェクトの立ち上げ数の点で急速に成長しており、業界の市場...

なぜ中国はアメリカや日本を抜いて人工知能で世界をリードしているのでしょうか?

[[279809]]北京は世界で最も人工知能企業が集中している都市であり、中国の人工知能分野は世界...