偽の顔を正確に生成します! Amazonの新しいGANモデルは死角のないオールラウンドな美しさを提供します

偽の顔を正確に生成します! Amazonの新しいGANモデルは死角のないオールラウンドな美しさを提供します

最近、Amazon One の研究者は、生成された画像を明示的に制御できる GAN をトレーニングするためのフレームワークを提案しました。このフレームワークは、年齢、ポーズ、表情などの正確な属性を設定することで、生成される画像を制御できます。

Amazon One チームは最近、生成された画像の属性を明示的に制御できる GAN トレーニング フレームワークを提案しました。このフレームワークでは、年齢、姿勢、表情などの正確な属性を設定することで、生成された画像を制御できます。

この論文はarxivで公開されており、Google Driveに対応する補足説明があります。

GAN で生成された画像を編集する現在のアプローチのほとんどは、標準的な GAN トレーニング後に暗黙的に獲得される潜在空間分解特性を利用することで部分的な制御を実現します。このメソッドは、特定のプロパティの相対的な強度を変更することはできますが、その値を明示的に設定することはできません。

最近提案された方法は、変形可能な 3D 顔モデルを使用して顔の属性を明示的かつ正確に制御し、GAN でのきめ細かい制御機能を実現するように設計されています。

これまでの方法とは異なり、この制御は変形可能な 3D 顔モデル パラメータに制限されず、人間の顔の領域を超えて拡張できます。

対照学習を使用して、明示的に因数分解された潜在空間を持つ GAN を取得します。この分解は、人間が解釈可能な入力を適切な潜在ベクトルにマッピングし、明示的な制御を可能にする制御エンコーダーをトレーニングするために使用されます。

研究者らは、顔の領域で、身元、年齢、姿勢、表情、髪の色、照明の制御を実証しました。また、肖像画と犬の画像生成領域でフレームワークの制御機能を実証し、新しい方法が質的にも量的にも SOTA を達成できることを証明しました。

最初の段階では、各バッチの各属性は、対応するサブベクトルを共有する潜在ベクトルのペアを使用して構築されます。 敵対的損失に加えて、バッチ内の各画像は、サブベクトルが同じか異なるかを考慮して、属性ごとに対照的に他のすべての画像と比較されます。

第 2 段階では、解釈可能なパラメータを適切な潜在ベクトルにマッピングするようにエンコーダーがトレーニングされます。

推論中、k 番目のエンコーダ入力を目的の値に設定することによって、属性 k の明示的な制御が実現されます。

照明、角度、表現を明示的に制御:

研究者らは ArcFace を使用して、ID 属性を共有する画像と、ポーズ、照明、表情の属性が異なる画像の 10,000 組を生成することで、生成された画像の埋め込みベクトルを抽出しました。

髪の色と年齢コントロールへの効果:

モデルが出力を明確に制御していることを確認するために、研究者は制御の精度を比較しました。 FFHQ から 10,000 枚の画像がランダムに選択され、その属性が予測されて、実際の画像に表示される実行可能な属性のプールが生成されます。

他のプロパティを変更せずに絵画の芸術的なスタイルを変更することも可能です。

ペットを飼うのが好きな人のために、生成された犬の画像のいくつかのプロパティを明示的に制御することもできます。

同時に、1 つのプロパティを変更できるだけでなく、複数のプロパティ値を同時に制御することもできます。

Amazon Oneの制御可能なGANモデルを試してみて、現状の美容ツールはすでに非常に使いやすく、今後もさらに素晴らしい機能が追加されそうな気がしました。

<<:  新素材の画期的な進歩、AIの医療への参入…2021年はどんな新しい技術トレンドを迎えるのでしょうか?

>>:  市場規模は100億元を超える可能性あり。これら4種類の医療用ロボットをご存知ですか?

ブログ    
ブログ    
ブログ    

推薦する

機械学習で画像の色を復元する方法

[[217139]]この記事では、k-means アルゴリズムを使用して画像の色を復元することを提案...

大規模機械学習のためのプログラミング手法、計算モデル、Xgboost および MXNet の事例

[[191977]]現在、機械学習のトレンドは、従来の方法のシンプルなモデル + 少量データ (手動...

5つのAI技術トレンドが私たちの労働環境を根本的に変える

[51CTO.com クイック翻訳] 現在、人工知能技術に対する人々の見解は主に2つの陣営に分かれて...

人工知能プロジェクトのための 10 のヒント - ガイド

昨日の人工知能プロジェクトに関する 10 の提案 - 理論に続き、今日は人工知能プロジェクトの 10...

人工知能は匿名のチェスプレイヤーの身元を確認でき、プライバシーの脅威となる

人工知能技術はすでに音声や手書きを通じて個人の身元を確認することができます。現在、人工知能アルゴリズ...

王小川の大型模型製作の秘密のレシピが初めて公開されました。5つのステップ、完成まで2か月

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

チューリング賞受賞者のヨシュア・ベンジオ氏:ディープラーニングの最優先事項は因果関係を理解すること

ディープラーニングは大量のデータからパターンを見つけるのが得意だが、それらの間のつながりを説明するこ...

AIがサプライチェーンと物流に与える影響

1. サプライチェーンにおける人工知能の応用テクノロジーの変革の可能性のため、多くの業界で AI の...

...

単語の順序はGPT-4の読解力には影響しないが、他の大規模モデルでは影響しない。

研究によると、漢字の文字の順序は必ずしも読み方に影響しない(英語の場合は各単語の文字の順序が影響する...

人工知能が人間の仕事の6%を奪い、置き換える可能性がある

[[187207]]人工知能は人類を滅ぼすことはないかもしれないが、人工知能が人間の仕事を奪うのでは...

Versius手術ロボットが英国泌尿器科手術に登場

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

新しい報告書が確認:慎重に扱わなければ、人工知能は現実版「ブラックミラー」になる

新しい報告によると、私たちは人工知能革命の瀬戸際に立っている。この革命において、私たちが作り出すテク...

人工知能(AI)が商業ビルのアプリケーションで成功を収める

[[359215]]今日、ビッグデータやモノのインターネットなどのテクノロジーが広く応用されるように...

...