AI 導入の謎を解明: クラウドとエッジ

AI 導入の謎を解明: クラウドとエッジ

現在、ディープラーニング テクノロジーを展開できる方法としては、デバイス上への直接展開、クラウド内への展開、エッジでの展開の 2 つがあります。

[[356707]]

処理能力とメモリ消費量、および AI モデルの規模に対する要求が厳しいため、これらの展開のほとんどはクラウドに依存しています。クラウドの導入により、AI は高性能コンピューティング システムのパワーを活用できるようになりますが、課題は残ります。処理のためにデバイスとクラウドの間でデータを送受信する必要があるため、プライバシーに関する懸念が生じ、遅延、帯域幅、接続性による制限が生じます。

このため、業界ではエッジ AI の開発に注力するようになりましたが、このトピックについては前回の記事でも触れました。これらの取り組みは主に、AI モデルのフットプリントを削減し、エッジ デバイスに直接展開できる AI モデルのトレーニングに新しい方法を導入することに重点を置いています。

エッジ AI は、スマート デバイスがリアルタイムで真に自律的な意思決定を行えるようにすることでクラウドの欠点を解決し、ディープラーニングを促進します。具体的には、これにより、すべてのデータをクラウドとの間で継続的に送受信する必要がなくなり、プライバシー、帯域幅、およびレイテンシの制約が改善されます。さらに、新たなエッジ AI の導入方法により、速度、電力、メモリ消費が大幅に改善され、コストを削減し、環境への影響を抑えることができます。

一方の利点を他方で完全に置き換えることはできません。そのため、現実世界で AI を導入する場合、最も効果的なのはクラウドとエッジのハイブリッド アプローチを採用した AI 導入です。しかし、ハイブリッドアプローチとはどのようなものでしょうか?

より良い結果を得るためのハイブリッド展開のための無料ワークフロー

最初のステップは、エッジでリアルタイムに意思決定を行う必要があるユースケースと、長期的な分析と改善のためにクラウドで処理できるユースケースを特定して、効率とスケーラビリティを最大化するワークフローを除外することです。

自動運転車、農業用ドローンやシステム、カメラ、モバイルデバイスなど、リアルタイムの意思決定が必要な状況で、スマートエッジデバイスにディープラーニングを導入すると、同時に、システムはデータをクラウドにアップロードして保存し、さらに強力なエンジンで処理および分析を実行することもできます。これにより、システムは高性能コンピューティングの利点を実現し、クラウド内のデータを他のシステムのデータと組み合わせることができるようになります。

この結合されたデータを使用することで、モデルを再トレーニングし、継続的に改善することができます。クラウドで再トレーニングされたら、新しいモデルをエッジに再展開できます。

クラウド AI とエッジ展開の利点を組み合わせると、単一のアプローチを単独で採用するよりも強力になります。具体的には、クラウド AI の処理能力と高いパフォーマンスは、エッジ AI の効率性、速度、自律性を補完することができます。

ハイブリッドアプローチの実践

自動運転車への AI の応用は、補完的なアプローチの利点を示す具体的なユースケースです。

このユースケースでは、車が安全に運転できるようにするために、AI モデルがデバイスと車両上で直接エッジで実行されることが重要です。車がデータをクラウドに送信して処理する前に行動を起こせなければ、安全を確保するために十分な速さで反応して判断することができません。さらに、車両が継続的にインターネット接続を維持できるという保証はありません。

しかし、自動車メーカーは、リアルタイムの意思決定に必要な量よりも多くのデータを収集することでも利益を得ることができます。収集したデータをクラウドに送信して処理することは、モデルを継続的に改善し、再トレーニングするための鍵となります。これにより、デバイスのデータを徹底的に処理できるだけでなく、ディープラーニングからの洞察を他のエッジデバイスから収集されたデータと組み合わせて、より詳細な入力と理解が可能になります。この洞察に基づいて、アルゴリズムを継続的に改善し、自律走行車システムを開発することができます。

次は何か?エッジAIとクラウドAIの進化

クラウドやエッジで AI の力を活用する組織が増えるにつれ、現実世界の価値をもたらすディープラーニング アプリケーションがさらに増えるでしょう。

5G の台頭により、ディープラーニングの発展は今後も促進されるでしょう。 5G が普及するにつれて、スーパーコンピューティングのアクセシビリティが向上します。具体的には、5G によりエッジからクラウドまでのデータ共有がよりシームレスかつ効率的になり、より効率的なデータ処理が可能になります。

しかし、5G であっても、リアルタイムの意思決定はエッジで行う必要があります。クラウドは依然として、エッジ アプリケーションのデータ処理ニーズを即座に満たすことはできません。したがって、AI 企業がモデルの導入を計画する際には、エッジ AI に引き続き重点を置く必要があります。クラウドとエッジの導入に対して補完的なアプローチを採用する企業は、モデルの短期的な処理能力と、モデルを効果的に保存、処理、改善する長期的な能力の両方において、最大の成功を収めることができます。

<<:  弁護士の仕事もAIによって奪われるのでしょうか?ユーザー: 他に何ができますか?

>>:  将来、人工知能ロボットに置き換えられる可能性のある10の仕事

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

機械学習プロジェクトの 87% が失敗する 10 の理由

機械学習は、最近ニュースでよく耳にする言葉ですが、さらに多くのことを実現する可能性を秘めた技術です。...

...

OpenAIの最強のライバルトレーニングAIがLLMブラックボックスを分解し、ビッグモデルの「魂」を予期せず垣間見る

大規模なモデルの「ブラックボックス」を解体するために、人類解釈可能性チームは、新しいモデルをトレーニ...

Google の自動運転車の秘密の世界を解明: 初めて公開された強力なツールの数々

[[201428]]アトランティック誌は今週、アルファベット傘下の自動運転企業ウェイモの謎を解明す...

マイクロソフトは、人間と同じようにニュースを翻訳できるAIの画期的な進歩を主張している

米国現地時間3月14日、マイクロソフトの研究者らは、人間と同等の精度でテキストを翻訳できる人工知能を...

生成AIを使用してフィッシングメール攻撃を防ぐ方法

今年、ChatGPTはインターネット全体で人気を博しました。近年、AI人工知能は大きな進歩を遂げ、あ...

機械学習の問題を解決する一般的な方法があります!この記事を1つだけ読んでみてください!

[[205485]]アビシェーク・タクル編集者: Cathy、Huang Wenchang、Jia...

次世代のインターネット技術 - ディープラーニング

[[384617]]過去 20 年間がインターネットの急速な発展の 20 年間であったとすれば、次の...

より強力なLlama 2はオープンソースであり、商用目的で直接使用できます。一夜にして、ビッグモデルの風景は変わりました。

一夜にして、ビッグモデルの状況は再び劇的に変化しました。写真Llama は常に AI コミュニティで...

Xing Bo 氏のチームの LLM360 は、大規模なモデルを真に透明化する総合的なオープンソース プロジェクトです。

オープンソース モデルは、数だけでなくパフォーマンスも増加しており、活発な活力を示しています。チュー...

2021年の世界トップ10の画期的テクノロジー:TikTokアルゴリズムと北斗ナビゲーションがリストに

[[384967]]最近、アメリカの「MITテクノロジーレビュー」は、2021年の世界のトップ10の...

単一のGPUではGPT-3をトレーニングすることはできませんが、これを使用するとハイパーパラメータを調整できます。

偉大な科学的成果は試行錯誤だけでは達成できません。たとえば、宇宙計画におけるすべての打ち上げは、空気...

...

推奨される 5 つのオープンソースオンライン機械学習環境

[51CTO.com クイック翻訳] 機械学習は、機械が直接プログラムされることなく学習できるように...

...