AI 導入の謎を解明: クラウドとエッジ

AI 導入の謎を解明: クラウドとエッジ

現在、ディープラーニング テクノロジーを展開できる方法としては、デバイス上への直接展開、クラウド内への展開、エッジでの展開の 2 つがあります。

[[356707]]

処理能力とメモリ消費量、および AI モデルの規模に対する要求が厳しいため、これらの展開のほとんどはクラウドに依存しています。クラウドの導入により、AI は高性能コンピューティング システムのパワーを活用できるようになりますが、課題は残ります。処理のためにデバイスとクラウドの間でデータを送受信する必要があるため、プライバシーに関する懸念が生じ、遅延、帯域幅、接続性による制限が生じます。

このため、業界ではエッジ AI の開発に注力するようになりましたが、このトピックについては前回の記事でも触れました。これらの取り組みは主に、AI モデルのフットプリントを削減し、エッジ デバイスに直接展開できる AI モデルのトレーニングに新しい方法を導入することに重点を置いています。

エッジ AI は、スマート デバイスがリアルタイムで真に自律的な意思決定を行えるようにすることでクラウドの欠点を解決し、ディープラーニングを促進します。具体的には、これにより、すべてのデータをクラウドとの間で継続的に送受信する必要がなくなり、プライバシー、帯域幅、およびレイテンシの制約が改善されます。さらに、新たなエッジ AI の導入方法により、速度、電力、メモリ消費が大幅に改善され、コストを削減し、環境への影響を抑えることができます。

一方の利点を他方で完全に置き換えることはできません。そのため、現実世界で AI を導入する場合、最も効果的なのはクラウドとエッジのハイブリッド アプローチを採用した AI 導入です。しかし、ハイブリッドアプローチとはどのようなものでしょうか?

より良い結果を得るためのハイブリッド展開のための無料ワークフロー

最初のステップは、エッジでリアルタイムに意思決定を行う必要があるユースケースと、長期的な分析と改善のためにクラウドで処理できるユースケースを特定して、効率とスケーラビリティを最大化するワークフローを除外することです。

自動運転車、農業用ドローンやシステム、カメラ、モバイルデバイスなど、リアルタイムの意思決定が必要な状況で、スマートエッジデバイスにディープラーニングを導入すると、同時に、システムはデータをクラウドにアップロードして保存し、さらに強力なエンジンで処理および分析を実行することもできます。これにより、システムは高性能コンピューティングの利点を実現し、クラウド内のデータを他のシステムのデータと組み合わせることができるようになります。

この結合されたデータを使用することで、モデルを再トレーニングし、継続的に改善することができます。クラウドで再トレーニングされたら、新しいモデルをエッジに再展開できます。

クラウド AI とエッジ展開の利点を組み合わせると、単一のアプローチを単独で採用するよりも強力になります。具体的には、クラウド AI の処理能力と高いパフォーマンスは、エッジ AI の効率性、速度、自律性を補完することができます。

ハイブリッドアプローチの実践

自動運転車への AI の応用は、補完的なアプローチの利点を示す具体的なユースケースです。

このユースケースでは、車が安全に運転できるようにするために、AI モデルがデバイスと車両上で直接エッジで実行されることが重要です。車がデータをクラウドに送信して処理する前に行動を起こせなければ、安全を確保するために十分な速さで反応して判断することができません。さらに、車両が継続的にインターネット接続を維持できるという保証はありません。

しかし、自動車メーカーは、リアルタイムの意思決定に必要な量よりも多くのデータを収集することでも利益を得ることができます。収集したデータをクラウドに送信して処理することは、モデルを継続的に改善し、再トレーニングするための鍵となります。これにより、デバイスのデータを徹底的に処理できるだけでなく、ディープラーニングからの洞察を他のエッジデバイスから収集されたデータと組み合わせて、より詳細な入力と理解が可能になります。この洞察に基づいて、アルゴリズムを継続的に改善し、自律走行車システムを開発することができます。

次は何か?エッジAIとクラウドAIの進化

クラウドやエッジで AI の力を活用する組織が増えるにつれ、現実世界の価値をもたらすディープラーニング アプリケーションがさらに増えるでしょう。

5G の台頭により、ディープラーニングの発展は今後も促進されるでしょう。 5G が普及するにつれて、スーパーコンピューティングのアクセシビリティが向上します。具体的には、5G によりエッジからクラウドまでのデータ共有がよりシームレスかつ効率的になり、より効率的なデータ処理が可能になります。

しかし、5G であっても、リアルタイムの意思決定はエッジで行う必要があります。クラウドは依然として、エッジ アプリケーションのデータ処理ニーズを即座に満たすことはできません。したがって、AI 企業がモデルの導入を計画する際には、エッジ AI に引き続き重点を置く必要があります。クラウドとエッジの導入に対して補完的なアプローチを採用する企業は、モデルの短期的な処理能力と、モデルを効果的に保存、処理、改善する長期的な能力の両方において、最大の成功を収めることができます。

<<:  弁護士の仕事もAIによって奪われるのでしょうか?ユーザー: 他に何ができますか?

>>:  将来、人工知能ロボットに置き換えられる可能性のある10の仕事

ブログ    
ブログ    

推薦する

インペリアル・カレッジ:専門医の80%が懸念する心臓リズムデバイスインプラント手術問題をAIで解決する方法

インペリアル・カレッジ・ロンドンの研究者らは、ペースメーカーや除細動器のメーカーとモデルを識別するた...

...

AIプロジェクトの落とし穴を避けるためのガイド

インターネットとモバイルインターネット時代の「ビジネスモデルの革新」がもたらす投資配当は、マクロ経済...

...

次世代交通におけるAI世代の影響

次世代の交通手段は、電子機器、持続可能性、経験を設計の中核としており、Gen AI は、想定される次...

自動運転車の安全性保証、検証、認証の見直し

2022年2月6日にarXivにアップロードされたレビュー論文「自動運転車の安全性保証、検証、認証:...

スタートアップに適した AI ビジネス モデルを選択するにはどうすればよいでしょうか?

[[406810]] [51CTO.com クイック翻訳]人工知能技術は企業が行うビジネスにとって...

GitHub ホットリスト 1 位: 数百万のトークン コンテキスト、動画も生成可能、カリフォルニア大学バークレー校制作

今日の GitHub ホット リストのトップは、最新のオープン ソース ワールド モデルです。コンテ...

Google の新しい AI ツールが人間のコールセンター従業員に取って代わる可能性があります。

[[237962]]海外メディアの報道によると、Googleは本日開催されたCloud Nextカ...

現実世界の問題を解決するための 4 つの機械学習戦略

広く認識されている機械学習の形式には、教師あり学習、教師なし学習、半教師あり学習、強化学習の 4 つ...

人工知能とは何ですか? AIが何なのかまだ知らない人が多い

知覚、学習、推論、問題解決などの認知機能を実行する能力を持つ機械は、人工知能を備えていると考えられて...

初期の携帯電話で使用されていたGPRS暗号化アルゴリズムが意図的に弱められていたことが明らかになった。

[[406364]]ヨーロッパの複数の大学の研究者チームが論文の中で、初期の携帯電話で使用されてい...

フロントエンドの一般的な暗号化アルゴリズムについてお話ししましょう

情報セキュリティの重要性が高まるにつれ、さまざまなフロントエンド暗号化がますます重要になっています。...

IoT が成功するために AI が必要な理由

モノのインターネットは膨大な量のデータを生成します。そのデータは、都市が事故や犯罪を予測するのに役立...

...