テクノロジー|軽量顔検出アルゴリズムの徹底レビュー

テクノロジー|軽量顔検出アルゴリズムの徹底レビュー

顔検出は、幅広いアプリケーションと多くの研究者を抱えるコンピューター ビジョンの古くからのトピックです。業界はより正確な検出アルゴリズムに向かっているだけでなく、軽量の顔検出アルゴリズムもアプリケーションの寵児になりつつあります。この記事では、近年の軽量顔検出アルゴリズムのオープンソース実装についてまとめています。その多くはオープンソース コミュニティのスター プロジェクトとなっています。

01超軽量高速汎用顔検出器 1MB

Github スター: 4.8k

パラメータサイズ: 1.04~1.1MB、int8量子化後約300KB

Github: https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

画像効果を検出します(入力解像度:640x480):


02 LFFD:エッジデバイス向けの軽量・高速な顔検出システム

Github スター: 919

パラメータボリューム: 6.1 M

あらゆるサイズとデバイスに対応する顔検出器のバスケット

論文: https://arxiv.org/abs/1904.10633

Github: https://github.com/YonghaoHe/A-Light-and-Fast-Face-Detector-for-Edge-Devices

03. libface検出

Github スター: 9.3k

パラメータボリューム: 3.34M

画像内の顔検出のためのオープンソース ライブラリ。顔検出速度は1000FPSに達します。

Github: https://github.com/ShiqiYu/libfacedetection

04ジクシーエヌ

国内開発者ZuoQingのオープンソースディープラーニング推論ライブラリであり、顔検出はMTCNNアルゴリズムを使用して実装されています。

Github スター: 1.8k

GitHub: https://github.com/zuoqing1988/ZQCNN

画像効果を検出:

05センターフェイス

Github スター: 9.3k

パラメータサイズ: 7.3MB、改良版はわずか2.3MB

CenterFace は、エッジ デバイス向けの実用的なアンカーフリーの顔検出および位置合わせアルゴリズムです。

Github: https://github.com/Star-Clouds/CenterFace

06 DBフェイス

Github スター: 650

パラメータサイズ: 7.03MB

DBFace はアンカーフリーのネットワーク構造です。

GitHub: https://github.com/dlunion/DBFace

画像効果を検出:

DBFace の結果 (しきい値 = 0.2)

DBFace Small-H の結果 (しきい値 = 0.3)

RetinaFace-MobileNetV2 の結果 (しきい値 = 0.2)

CenterFace-MobileNetV2 の結果 (しきい値 = ?)

07ブレイズフェイス

モバイル GPU 推論向けにカスタマイズされた軽量で高性能な顔検出器。

Github スター: 6.4k

論文: https://arxiv.org/pdf/1907.05047v1.pdf

GitHub: https://github.com/google/mediapipe

08オープンヴィーノ

このライブラリは、Intel のオープンソースのディープラーニング推論ライブラリです。顔検出は SSD アルゴリズムに基づいており、非常に高速です。

Github スター: 1.1k

Github: https://github.com/openvinotoolkit/openvino

09レチナフェイスモバイルネット0.25

Github スター: 6.5k

パラメータボリューム: 1.68M

GitHub: https://github.com/deepinsight/insightface/

10 MTCN

Github スター: 2.4k

論文: https://arxiv.org/abs/1604.02878

Github: https://github.com/kpzhang93/MTCNN_face_detection_alignment

画像効果を検出:

<<:  フォレスターの予測: 2021年に人工知能が輝く

>>:  機械学習における欠損値に対処する9つの方法

ブログ    

推薦する

南洋理工大学華中科技大学などの最新研究:完全自動化された「即脱獄」、大型モデルだけが大型モデルを倒せる! NDSS

今年、ネットユーザーから「おばあちゃんの抜け穴」と揶揄された大規模言語モデルの「脱獄」法が大人気とな...

Shell、EY、GE で変革を推進している AI Center of Excellence はどれほど素晴らしいのでしょうか?

シェルが2013年に初めて「AI Center of Excellence」を立ち上げたとき、それは...

...

AIチップがまだ普及していないのはなぜでしょうか?

2019年、国内外の業界関係者が共同でAIチップの開発を推進しました。 7nmチップはまだ完全に展...

年末総括:セキュリティ業界は2020年にCOVID-19パンデミックの課題に対処するのに貢献した

新型コロナウイルス感染症のパンデミックは、セキュリティ業界を含む世界中のあらゆる業界のあらゆる側面に...

アリババAIは1日1兆回以上呼び出され、中国を代表する人工知能企業に

アリババは9月26日、杭州で開催された雲奇大会で、初めて同社の人工知能通話の規模を発表した。1日あた...

Ele.meにおける人工知能の応用

[[212221]] Ele.meについてほとんどの人がテイクアウトを注文したことがあるでしょう。テ...

...

アダムはまた「引退」するのでしょうか?イェール大学のチームがAdaBeliefを提案

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

もう一つの機械学習モデル説明ツール: Shapash

シャパシュとはモデルの解釈可能性と理解可能性は、多くの研究論文やオープンソース プロジェクトの焦点と...

AIの未来はブロックチェーンの未来とつながっているのでしょうか?

近代以降、ほぼすべての産業革命はさまざまな程度の自動化によって推進されてきました。これまでの産業革命...

ChatGPTはカスタムコマンドを起動します。一度言って覚えておけば、話すたびにそれに従います。

「私は小学校の理科の先生です。科学的な概念について説明していただきたいです。例や類推などのテクニッ...

IBM: ワトソン人工知能システムをすべてのクラウドプラットフォームに公開

米国のテクノロジーメディアの報道によると、IBMは本日、ワトソンブランドの人工知能サービスを自社のク...

AIプロジェクトが失敗する6つの理由

人工知能が人間の生活と市場に与える影響は計り知れません。世界経済統計によると、人工知能は2030年ま...

必要なのはこれら3つの機械学習ツールだけです

多くの機械学習技術は、急速に概念実証から人々が日常的に頼りにする重要なテクノロジーの基盤へと移行して...