コンピュータービジョン: 画像検出と画像セグメンテーションの違いは何ですか?

コンピュータービジョン: 画像検出と画像セグメンテーションの違いは何ですか?

人工知能における画像処理

人工知能には画像処理のためのさまざまなタスクがあります。この記事では、物体検出と画像セグメンテーションの違いについて説明します。

どちらのタスクでも、画像内の興味のあるアイテムの位置を見つけたいと考えています。たとえば、防犯カメラの写真のセットがあり、それぞれの写真に写っているすべての人の位置を特定したいとします。

これには通常、オブジェクト検出と画像セグメンテーションという 2 つの方法を使用できます。

物体検出 - 予測された境界ボックス

物体検出について話すとき、通常は境界ボックスについて話します。これは、画像処理によって写真内の各人物の周囲の四角形が識別されることを意味します。

境界線は通常、左上隅の位置 (2 つの座標) と幅および高さ (ピクセル単位) によって定義されます。

Open Image Dataset からの注釈付き画像。雪だるまを作る家族、mwvchamberより。画像はCC BY 2.0ライセンスに基づいて使用されています。

ターゲット検出方法を理解するには?

画像内のすべての人物を識別するというタスクに戻ると、境界ボックスによるオブジェクト検出のロジックを理解できます。

私たちの頭に最初に浮かんだ解決策は、画像を細かく切り分け、各サブ画像に画像分類を適用して、その画像が人間であるかどうかを区別することでした。 単一の画像を分類することはより簡単な作業であり、物体検出の重要な側面の 1 つであるため、この段階的なアプローチを採用しました。

現在、YOLO モデル (You Only Look Once) がこの問題を解決するための素晴らしい発明です。 YOLO モデルの開発者は、バウンディング ボックス メソッド全体を一度に実行できるニューラル ネットワークを構築しました。

物体検出のための現在の最先端モデル

  • YOLO
  • より高速なRCNN

画像セグメンテーション - マスクの予測

画像を段階的にスキャンする代わりに、絵画のフレームから離れて、画像にピクセル単位で注釈を付けるという論理的な方法もあります。

これを行うと、基本的には入力画像を変換した、より詳細なモデルが得られます。

画像セグメンテーション手法を理解するにはどうすればよいでしょうか?

アイデアは非常に基本的なものです。製品のバーコードをスキャンする場合でも、アルゴリズムを適用して入力情報を変換し(さまざまなフィルターを適用することにより)、バーコードシーケンス以外のすべての情報が最終画像に表示されないようにすることができます。


左の画像: https://commons.wikimedia.org/wiki/File:Image-segmentation-example.jpg。右の画像: https://commons.wikimedia.org/wiki/File:Image-segmentation-example-segmented.png.どちらのファイルも https://en.wikipedia.org/wiki/en:Creative_Commons をサポートしています

これは画像上のバーコードを見つけるための基本的な方法ですが、画像セグメンテーションで行われることと似ています。

画像セグメンテーションの戻り形式はマスクと呼ばれます。これは、元の画像と同じサイズの画像ですが、各ピクセルには、オブジェクトが存在するかどうかを示すブール値のみが含まれます。

複数のカテゴリを許可すると、より複雑になります。たとえば、ビーチの景色を空気、海、砂の 3 つのカテゴリに分類できるようになります。

画像セグメンテーションに最適なモデル

  • マスクRCNN
  • ユネット
  • セグネット

比較の概要

物体検出

  • 入力は、ピクセルあたり3つの値(赤、緑、青)を持つマトリックス(入力画像)、または白黒の場合はピクセルあたり1つの値を持つマトリックス(入力画像)です。
  • 出力は左上隅とサイズで定義された境界ボックスのリストです。

画像セグメンテーション

  • 入力は、ピクセルあたり3つの値(赤、緑、青)を持つマトリックス(入力画像)、または白黒の場合はピクセルあたり1つの値を持つマトリックス(入力画像)です。
  • 出力は、指定されたクラスを含む各ピクセルの値を持つマトリックス (マスク イメージ) です。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式サイトにアクセスして許可を申請してください。

<<:  人工知能と機械学習技術がビジネス開発を推進

>>:  ディープラーニングのコードを信頼できるのはなぜでしょうか?

ブログ    

推薦する

ラオ・ファン氏が投資に参加し、MITの中国人女性科学者が2億ドルの資金を調達! 10,000台のH100が1000億以上のパラメータでAIエージェントをトレーニング

今、シリコンバレーに新たな AI ユニコーンが誕生しました!この中国人女性科学者が設立した会社はIm...

COVID-19パンデミックは顔認識技術の導入を促進している

COVID-19は顔認識技術の使用にどのような影響を与えるでしょうか? [[374366]] #p#...

機械学習における欠損値に対処する9つの方法

データサイエンスはデータに関するものです。これは、あらゆるデータ サイエンスや機械学習プロジェクトの...

...

無人運転車の現状はどうなっているのでしょうか?

私たちはここ数年、自動運転車について話し合い、議論してきました。しかし、道路上では見かけません。これ...

AIコンピューティングパワーギャップを越えて、人工知能コンピューティングセンターの産業的価値が強調される

「第14次5カ年計画」の骨子には「デジタル化の加速とデジタル中国の構築」という独立した章が設けられ、...

ロボット工学の分野にディープラーニングを取り入れる新たな試みはありますか?

ディープラーニングが人気を集めている今、誰もが自分の研究分野でそれを活用できないか考えています。その...

百度のDuerOS会話型AIオペレーティングシステムと複数のスマート製品が上海のCESアジアで発表されました

2018CES Asiaが今朝上海で開幕しました。アジアの消費者向けテクノロジー業界の年次イベントで...

人工知能導入の第一歩:企業で最も一般的な3つのアプリケーション

人工知能はあらゆる業界の基盤になりつつありますが、多くの企業はまだどのように始めればよいかわかってい...

UniPAD: ユニバーサル自動運転事前トレーニングモデル!あらゆる種類の知覚タスクをサポートできます

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...

...

双子: 効率的な視覚的注意モデルの設計を再考する

著者 | 湘湘天志 張波 他Twins は Meituan とアデレード大学が提案した視覚的注意モデ...

AI とクラウド コンピューティングが出会うとき、サービスとしての AI は神でしょうか、それとも悪魔でしょうか?

最先端技術の継続的な発展とクラウドコンピューティングサービスの普及により、AI as a servi...

AIは単なる機械学習ですか?機械学習とは何かを3000語でわかりやすく説明します

コンピューター科学者は、人工知能の中核技術である機械学習とディープラーニングにおいて大きな進歩を遂げ...