5G時代、移動ロボットは知能でどのように勝利できるのでしょうか?

5G時代、移動ロボットは知能でどのように勝利できるのでしょうか?

移動ロボットは、環境認識、動的意思決定と計画、行動制御と実行などの複数の機能を統合した総合システムであり、センサー技術、情報処理、電子工学、コンピュータ工学、自動化制御工学、人工知能など、複数の分野の研究成果を結集したものです。移動ロボットは、人間の命令を受け入れ、事前にプログラムされたプログラムを実行し、人工知能技術を使用して策定された原則に従って動作することができます。

[[324744]]

近年、我が国の出生率は低下し続けており、製造業の人口ボーナスは徐々に消滅しつつあります。しかし、もともと我が国の高い出生率によってもたらされた人口ボーナスを享受していた3Cエレクトロニクス、物流、自動車製造などの産業は、現在、低い労働賃金と低い生産性という問題に直面しています。

そのため、人的資源の主要な代替として、移動ロボット(AGV)の需要がますます高まっています。同時に、物流システムの急速な発展に伴い、ロボットの性能は継続的に向上し、移動ロボットの適用範囲は大幅に拡大しました。生産や倉庫保管における多種多様な重い材料や完成品、あるいは物流仕分けにおける速達小包の爆発的な増加など、現在の移動ロボット技術は大量適用のタイミングに達しています。しかし、まだいくつか問題が残っています。限られた作業範囲、限られた事業範囲、限られたサービス提供、そして高い運用・保守コストは、移動ロボットが現在直面している大きな課題です。

自律位置決めロボットが直面する課題

移動ロボットが現在直面している困難の根本的な原因は、重要な技術(長期自律移動と広範囲カバー移動)が十分に突破されていないことです。

移動ロボットは動作中に広い範囲をカバーする必要があるため、さまざまな環境を記述するために大量のデータが必要になります。同時に、移動ロボットは動的なシーンに適応する必要があります。たとえば、移動ロボットが静的または動的な物体を検出して追跡する場合、環境の変化を予測するためにさらに多くの知識を学習する必要があります。

それだけでなく、移動ロボットは長時間稼働する必要があり、データの保存要件も増加しています。そのため、より多くのストレージスペースと強力なコンピューティング能力が必要になりますが、ロボットのスタンドアロン本体だけに頼っているとそれを実現するのは困難です。

クラウドロボティクスにおける技術革新

スタンドアロンのロボットでは今日の技術的ニーズを満たすことができないため、クラウドロボットが誕生しました。ロボットサイドコンピューティングとクラウドコンピューティングを活用し、ロボット技術の研究を行っています。

クラウドロボティクスにはいくつかの利点があります。

  • 1 つ目は、クラウド ロボット フレームワークを使用してコンピューティング リソースを柔軟に割り当てることができるため、複雑な環境での同時位置決めとマッピングが可能になります。
  • 2つ目:このフレームワークでは、多数のデータベースにアクセスできます。たとえば、物体を識別して把握する場合、比較のために多くのデータベースが必要です。また、外部の地図に基づいて長期的な位置特定を行う場合、多数の地図データベースへのアクセスも必要です。クラウドロボットは大量のデータを提供できます。
  • 3つ目:知識共有、つまり複数のロボットシステム間での情報共有を形成できます。つまり、これら複数のロボットは状況に応じて異なる装備を装備できるが、クラウド上である程度の知識を共有できるというわけだ。

要約すると、クラウド ロボットの技術的進歩は主に次の点に反映されています。まず、クラウドのワイヤレス ストレージ スペースと豊富なデータベース リソースを最大限に活用して、オンボード センサーの要件を削減し、分散アルゴリズムを設計し、クラウドの強力なコンピューティング能力とロボットのリアルタイム要件のバランスを追求します。次に、不安定なネットワークによって発生するネットワーク切断や、クラウドとロボット データ間の頻繁なやり取りによって発生するネットワーク遅延を補正します。

5G時代の到来により、高帯域、低遅延、高同時実行の通信ネットワークを利用できるようになり、クラウド、ネットワーク、端末を統合したクラウドロボットを真に大規模に活用できるようになり、移動ロボットの環境カバレッジの拡大、ビジネスカバレッジ能力の向上、シーンカバレッジの強化、運用・保守コストの削減が可能になります。このようにして初めて、サービスロボットの商業化プロセス全体が真に新しい時代を迎えることができるのです。

<<:  目に見える機械学習: ニューラルネットワークをゼロから理解する

>>:  機械学習モデルの仕組み

ブログ    

推薦する

投資家心理は安定しており、人工知能への資金流入は続いている

[[274634]] 2019 年の秋が近づき、最初の 2 四半期が終了しようとしている今、今年前半...

Llama2がオープンソース化された後、国内の大型モデルはどのような展開を見せるのでしょうか?

7 月 19 日、オープン ソース コミュニティの最も強力な大規模モデルが Llama から Ll...

...

出会い系アプリの女の子たちは実はStyleGANによって生成された偽の人物である

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

MetaMindによるNLP研究の徹底分析:機械学習をスキップさせる方法

自然言語処理は、人工知能研究における中心的な課題の 1 つです。最近、Salesforceによる買収...

スマートホームデバイスにおける ML と IoT の融合

人工知能は定期的に盛んに研究されている技術です。世界中の研究者が、AI の応用と実装をより迅速かつ効...

OpenAI は ChatGPT 機能のアップデートを多数リリースする予定ですが、そのうちいくつご存知ですか?

OpenAI 開発者関係の専門家 Logan Kilpatrick 氏は、ソーシャル メディアに「...

Facebookは再生可能エネルギー貯蔵を改善するために人工知能を活用する

Facebookとカーネギーメロン大学は、AIを使って新たな「電気触媒」を見つけようとしていると発表...

フォレスター:生成型AIと会話型AIが2023年のトップ10新興テクノロジーを独占

分析会社フォレスターは7月24日、2023年のトップ10新興テクノロジーレポートを発表しました。生成...

その本を読むのは時間の無駄だ!ロボットは北京大学入試数学テストに挑戦し、105点を獲得した。

6月7日、成都ハイテクの人工知能システム「AI-MATHS」数学大学入試ロボットが2017年度大学...

2022年にJAXを使うべきでしょうか? GitHubには16,000個のスターがあるが、この若いツールは完璧ではない

2018 年後半の発売以来、JAX の人気は着実に高まっています。 2020年、DeepMindは研...

MITとワトソン研究所のチームが、ジェスチャーを見るだけで音楽を完璧に再現する最新のAIを発表

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

...