人工知能はディープラーニングへと移行しており、強力なコンピューティングパワーの構築は重要な指標となっている

人工知能はディープラーニングへと移行しており、強力なコンピューティングパワーの構築は重要な指標となっている

報告によると、人工知能の最大の課題の 1 つは、認識率と精度が低いことです。精度を向上させるには、モデルの規模と洗練度を高め、オフライン トレーニングの頻度を増やす必要がありますが、それにはより大きな計算能力が必要です。現在、人工知能のアルゴリズムモデルの複雑さと精度が増すにつれて、インターネットとモノのインターネットによって生成されるデータは指数関数的に増加しています。データ量とアルゴリズムモデルの二重の重ね合わせにより、人工知能のコンピューティングに対する需要は増加しています。

[[322266]]

「2016年3月、グーグルの人工知能アルファ碁が韓国のチェスプレイヤー、イ・セドルを破ったとき、人々は人工知能の威力に驚嘆したが、その背後にある膨大な『努力』を知る人はほとんどいない。数千台のサーバー、数千のCPU、高性能グラフィックカード、そして囲碁1ゲームで消費される驚異的な電力量だ」と、元旺シンクタンクの人工知能部門ディレクターでチューリング・ロボティクスの最高戦略責任者であるタン・ミンジョウ氏は科技日報のインタビューで語った。

「クラウドコンピューティングやビッグデータなどのアプリケーションと比較すると、人工知能の計算能力に対する需要はほぼ無限だ」と、中国工程院の院士でインスパー・グループの主任科学者である王恩東氏は語った。

報告によると、人工知能の最大の課題の 1 つは、認識率と精度が低いことです。精度を向上させるには、モデルの規模と洗練度を高め、オフライン トレーニングの頻度を増やす必要がありますが、それにはより大きな計算能力が必要です。

現在、人工知能のアルゴリズムモデルの複雑さと精度が増すにつれて、インターネットとモノのインターネットによって生成されるデータは指数関数的に増加しています。データ量とアルゴリズムモデルの二重の重ね合わせにより、人工知能のコンピューティングに対する需要は増加しています。

中国情報通信科学院の王雲涛氏が通信世界ネットワークに発表した記事によると、人工知能インフラ構築の重要な側面は、汎用コンピューティング能力の基盤を継続的に強化することだという。現在のコンピューティングパワーの供給は、もはやインテリジェント社会の構築を満たすことができません。OpenAIの統計によると、2012年から2019年にかけて、ディープラーニングの「大きく、深く、多く」のモデルの進化に伴い、モデル計算に必要なコンピューティング量は30万倍に増加しました。コンピュータービジョンであれ、自然言語処理であれ、事前トレーニング済みモデルの普及により、モデルに必要なコンピューティングパワーは段階的な発展を直接示しています。

スタンフォード大学の「AIINDEX2019」レポートによると、2012年以前は、人工知能の計算速度はムーアの法則にほぼ従い、計算能力の需要は2年ごとに倍増していました。2012年以降、計算能力の需要の倍増時間は3〜4か月に直接短縮されました。一般的なコンピューティング供給能力は 20 年ごとに 2 倍にしかならないことを考えると、コンピューティング能力が限界に達していることは言うまでもありません。

間違いなく、人工知能がディープラーニングへと進むにつれて、コンピューティング能力は人工知能研究のコストを評価するための重要な指標となっています。

今後、コンピューティング能力の問題をどう解決するのでしょうか? 科技日報によると、コンピューティングとストレージの統合は現在、アルゴリズムのアップグレードを助け、促進しており、次世代の AI システムへの入り口となっています。インメモリ コンピューティングによって提供される大規模で効率的なコンピューティング能力により、AI アルゴリズムの設計においてより想像力を働かせることが可能になり、コンピューティング能力による制約がなくなります。これにより、高度なハードウェアがシステムとアルゴリズムの優位性にアップグレードされ、最終的には新規ビジネスの育成が加速されます。

コンピューティングとストレージの統合のトレンドに加えて、量子コンピューティングは AI に必要な膨大な計算能力を解決するもう 1 つの方法となる可能性があります。現在、量子コンピュータの発展は、従来のコンピュータのムーアの法則を超えており、従来のコンピュータの計算能力を基本基準として、量子コンピュータの計算能力は急速に発展しています。

<<:  インターネットの罪:Google がいかにして私たちを愚かにしているのか

>>:  AI as a Serviceが不可欠な理由

ブログ    

推薦する

10 分でチャットボットを作成するにはどうすればよいでしょうか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

Baidu Shen Dou: AIネイティブアプリケーションを作成するには2つのステップが重要

2024年1月10日、Honor MagicOS 8.0発表会と開発者会議において、Honor Te...

ドローンによる配達は近づいているが、商業利用にはまだ問題点を解決する必要がある

都市から農村まで、わが国の宅配便や電子商取引企業がドローン物流と配達に注力したことで、国産ドローンの...

企業は人工知能の可能性に目がくらんでいるのでしょうか?

多くの企業が AI イニシアチブの導入に意欲的に取り組んでいる一方で、AI が自社のビジネスにどのよ...

復旦大学の論文は、3体のSFシーンを実現:体にディスプレイ画面を装着し、ナビゲートやチャットも可能

誰もが歩くディスプレイ画面であり、これは単なる SF のワンシーンではありません。羅吉が最も感動した...

...

機械学習を活用して人事部門の時間を節約する方法

導入履歴書データベースに「ソフトウェア エンジニア」という名前の履歴書が 10,000 件あるとしま...

ユーザーはChatGPTが怠惰になったと不満を述べ、OpenAIはモデルを調整しておらず原因を調査中であると回答した。

12月12日、OpenAIの最新バージョンのチャットボットChatGPTが「怠惰」になったと不満を...

MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

自然言語プログラミングは Jupyter で直接実行できます。 MIT の中国人博士課程の学生によっ...

10,000倍速い!バークレーはSQLクエリを最適化するためにディープRLを使用することを提案している

SQL 結合を最適化する方法は、データベース コミュニティが何十年にもわたって研究してきた大きな問題...

マイクロソフトの人工知能音声技術は「複数の感情レベル」の調整をサポートし、「人間の声」の繊細な解釈を可能にする

IT Homeは4月12日、マイクロソフトが最近、最新の音声技術を発表したと報じた。この技術は「感情...

AIが人種差別や性差別も学習したのはなぜでしょうか?

[[232177]]外見の偏見や言語の差別など、AI による差別についてはこれまでたくさん話してき...

AIによる顔変えが流行っているが、Alipayはまだ安全か?公式回答

最近、AI技術を使ってアテナ・チュウ演じる黄容の顔を楊冪の顔に置き換える動画が話題になった。ネットユ...