2020 年のディープラーニングに最適な GPU の概要。どれが最適かを確認してください。

2020 年のディープラーニングに最適な GPU の概要。どれが最適かを確認してください。

ビッグデータダイジェスト制作

出典: lambdalabs

編纂者:張秋月

ディープラーニング モデルが強力になるにつれて、より多くのメモリ領域を占有しますが、多くの GPU にはトレーニングに十分な VRAM がありません。

では、ディープラーニングを始める準備ができたら、どのような GPU が最も適しているのでしょうか? ここでは、ディープラーニング モデルのトレーニングに適した GPU のリストと、それらを横並びで比較します。見てみましょう。

長すぎて読めない

2020 年 2 月現在、以下の GPU で現在のすべての言語モデルと画像モデルをトレーニングできます。

  • RTX 8000: 48GB VRAM、約5,500ドル
  • RTX 6000: 24GB VRAM、約4,000ドル
  • Titan RTX: 24GB VRAM、約2,500ドル

次の GPU は、ほとんどの (ただしすべてではない) モデルをトレーニングできます。

  • RTX 2080 Ti: 11GB VRAM、約1,150ドル
  • GTX 1080 Ti: 11GB VRAM、工場再生品で約800ドル
  • RTX 2080: 8GB VRAM、約720ドル
  • RTX 2070: 8GB VRAM、約500ドル

次の GPU は現在のモデルのトレーニングには適していません。

  • RTX 2060: 6GB VRAM、約359ドル。

この GPU でのトレーニングには比較的小さなバッチ サイズが必要であり、モデルの分布近似が影響を受け、モデルの精度が低下します。

画像モデル

メモリ不足になる前の最大バッチ サイズ:

*GPU にモデルを実行するのに十分なメモリがないことを示します。

パフォーマンス(1秒あたりに処理される画像数):

*GPU にモデルを実行するのに十分なメモリがないことを示します。

言語モデル

メモリ不足になる前の最大バッチ サイズ:

*GPU にモデルを実行するのに十分なメモリがないことを示します。

パフォーマンス:

* GPU にはモデルを実行するのに十分なメモリがありません。

Quadro RTX 8000の結果を使用して正規化されたパフォーマンス

画像モデル:

言語モデル

結論は

  • 言語モデルは、画像モデルよりも大きな GPU メモリの恩恵を受けます。右側の曲線が左側の曲線よりも急であることに注意してください。これは、言語モデルはメモリ サイズによってより制限され、画像モデルは計算能力によってより制限されることを示しています。
  • より大きなバッチ サイズを使用すると CUDA コアが飽和するため、VRAM が大きい GPU の方がパフォーマンスが向上します。
  • VRAM が大きい GPU では、比例して大きなバッチ サイズを実現できます。小学校レベルの数学しか知らない人なら、これが理にかなっていることがわかるでしょう。24 GB の VRAM を搭載した GPU は、8 GB の VRAM を搭載した GPU の 3 倍のバッチを処理できます。
  • 長いシーケンスの言語モデルは、シーケンスの長さの 2 乗で注意が集中するため、他のモデルと比較して不釣り合いに大量のメモリを消費します。

GPU 購入の推奨事項

  • RTX 2060 (6 GB): 空き時間にディープラーニングを探求したい。
  • RTX 2070 または 2080 (8 GB): ディープラーニングに真剣に取り組んでいますが、GPU 予算は 600 ~ 800 ドルです。 8 GB の VRAM はほとんどのモデルに適しています。
  • RTX 2080 Ti (11 GB): ディープラーニングに真剣に取り組んでおり、GPU 予算は約 1,200 ドルです。 RTX 2080 Ti は RTX 2080 よりも約 40% 高速です。
  • Titan RTX および Quadro RTX 6000 (24 GB): 最新モデルを頻繁に使用していますが、RTX 8000 を購入する予算がありません。
  • Quadro RTX 8000 (48 GB): 将来への投資をお考えの場合、または 2020 年の最新かつ最もクールなモデルをお探しの場合。

注記

画像モデル:

言語モデル:

関連レポート: https://lambdalabs.com/blog/choosing-a-gpu-for-deep-learning/

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  Huawei のフルシナリオ AI コンピューティング フレームワーク MindSpore がオープン ソースになりました。

>>:  人工知能は優秀な医師の役割を果たすのでしょうか?

ブログ    
ブログ    

推薦する

...

ディープラーニングでよく使われる8つの活性化関数

活性化関数(変換関数とも呼ばれる)は、ニューラル ネットワークを設計するための鍵となります。活性化関...

脅威検出システムにAIを統合するメリット

サイバー脅威は高度化、蔓延しているため、企業は常に警戒を怠ってはなりません。 2022年には、4億9...

人工知能が司法裁判に影響を与えている!人間と機械のコラボレーションが標準になるかもしれない

【CNMOニュース】科技日報によると、「中国裁判所情報化発展報告第5号(2021年)」がこのほど正...

アルゴリズムの法則から法則のアルゴリズムへ、アルゴリズムの時代を巻き起こす

ビッグデータの出現、クラウド コンピューティング テクノロジーの成熟度の向上、ディープラーニング ア...

AIが光子の時間を3D画像に変換し、時間の経過による世界を視覚化する

[[337082]]最近、グラスゴー大学コンピューティング科学学部のデータサイエンス研究者であるアレ...

どこにでもAI?小売業における 10 のエキサイティングな AI アプリケーション

[[311856]]小売業における当社の中核的な経験は、近年ほとんど変わっていません。店舗(またはオ...

...

この敵対的アルゴリズムは顔認識アルゴリズムを失敗させ、WeChatやWeiboの写真圧縮にも抵抗できる。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

心でタイピング、中国で脳コンピューターインターフェースの新記録が樹立されました!

手やキーボードを使わず、思考だけに頼って、1分間に691.55ビットをコンピューター画面に出力できま...

OpenAIの科学者による最新の大規模言語モデルのスピーチが話題となり、LLMの成功の鍵が明らかになった。

最近、OpenAIの研究科学者ヒョン・ウォン・チョン氏がソウル国立大学で「大規模言語モデル(2023...

EfficientViT-SAM: 精度を変えずにその場で離陸!

著者らは、高速化された SAM モデル ファミリである EfficientViT-SAM を提案しま...

...

美団の店舗ビジネスにおける異種広告混合配置の探求と実践

著者 | 屈譚旭洋 他LBS (位置情報サービス) の距離制約により、候補数が少ないと店内広告ランキ...