ファーウェイ、加算のみを使用するニューラルネットワークをオープンソース化:インターン生が開発を主導、効果は従来のCNNと同等

ファーウェイ、加算のみを使用するニューラルネットワークをオープンソース化:インターン生が開発を主導、効果は従来のCNNと同等

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

乗算のないニューラル ネットワークを想像できますか?単一ニューロンの演算であっても畳み込み演算であっても、乗算は避けられません。

ただし、乗算は加算よりもはるかに多くのハードウェア リソースを消費します。乗算を使わず加算を使うと、計算速度が大幅に向上するはずです。

昨年末、北京大学、華為ノアの方舟研究所、彭城研究所の研究者らがこのアイデアを実践し、加算のみを使用するニューラルネットワークAdderNet (加算器ネットワーク)を提案した。第一著者はHuawei Noah's Arkのインターンであり、現在は北京大学の博士課程3年生です。

本日、本論文がCVPR 2020 (Oral)に収録され、公式ソースコードがGitHub上に公開されました。興味のある学生はぜひ行って試してみるといいでしょう。

加算器ネットワークの紹介

加算器ネットワークの中核は、ユークリッド距離を L1 距離に置き換えることです。

L1 距離は、2 点間の座標差の絶対値の合計であるため、プロセス全体で乗算は行われません。

この新しい定義では、バックプロパゲーションで使用される偏微分演算も減算法になります。勾配降下法の最適化プロセスはsignSGDとも呼ばれます。

加算ネットワークの新しい定義では、特徴ベクトルの空間分布も CNN とは大きく異なります。

では、AdderNet は実際にどのように機能するのでしょうか?

CIFAR-10 画像分類タスクにおいて、AdderNet は Bengio らが提案した加法ニューラル ネットワーク BNN のパフォーマンスを大幅に向上させ、従来の CNN の結果に近づきました。

オープンソースコード

公式の AdderNet は Python3 と PyTorch に基づいています。

まず、PyTorch の公式ドキュメントに従って ImageNet データセットを準備し、プログラムを実行して検証セットへの影響を評価します。

  1. python test.py --data_dir 'path/to/imagenet_root/'

AdderNet は、ImageNet データセットで 74.9% の Top-1 精度と 91.7% の Top-5 精度を達成できます。

または、CIFAR-10 データセットをローカル コンピューターにダウンロードし、CIFAR-10 に対する効果をテストします。

  1. python test.py --dataset cifar10 --model_dir models/ResNet20-AdderNet.pth --data_dir 'path/to/cifar10_root/'

しかし、AdderNetはまだ独自にトレーニングする必要があり、同社は近々事前トレーニング済みのモデルをリリースする予定だとしている。

現段階の AdderNet には欠陥がないわけではありません。作者はプロジェクトのホームページで、AdderNet は加法フィルターで実装されているため推論速度が遅く、速度を上げるには CUDA で記述する必要があると述べています。

これは、ニューラル ネットワークの計算速度を向上させるという著者の当初の意図からは程遠いものです。

しかし、この論文の著者らは、今後も加算ニューラルネットワークに関する研究を継続し、より多くの成果を発表していくと述べています。この研究の新たな進展に期待しましょう。

Huawei Noah Labのインターン生が制作を主導

AdderNet の記事の第一著者は、同済大学数学部を卒業したChen Hanting氏です。彼は現在、北京大学情報科学技術学院で博士号取得を目指しており、Huawei Noah's Ark Laboratory でもインターンとして働いています。

修士課程と博士課程の最初の3年間で、第一著者として5本の論文を発表し、そのうちの1本「学生ネットワークのデータフリー学習」はICCV 2019に掲載されました。さらに、彼が参加した他の多くの論文は、NeurIPS、IJCAI、ICMLなどのトップカンファレンスに掲載されました。

ポータル

ソースコード: https://github.com/huawei-noah/AdderNet

論文アドレス: https://arxiv.org/abs/1912.13200

<<:  Github のトップ 5 オープンソース機械学習プロジェクト!データ計算が最大80倍高速化!

>>:  Google の優れた NLP 事前トレーニング モデルはオープンソースで、BERT に勝る

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ホワイトペーパー「マシンビジョンセキュリティカメラの画質評価手法に関する調査レポート」を公開

近年、マシンビジョンの成熟度が増すにつれ、マシンビジョン評価やイメージング能力評価が徐々に導入されて...

AI、IoT、ビッグデータでミツバチを救う方法

現代の農業はミツバチに依存しています。私たちが食べる食物や呼吸する空気を含む生態系のほぼ全体が、花粉...

DeepMindは、オートエンコーダに「自己修正」を教える「SUNDAE」と呼ばれる言語モデルを提案している。

[[440946]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitA...

人工知能システムにおける不確実性の定量化

翻訳者 | 朱 仙中校正 | 梁哲、孫淑娟まとめ人工知能 (AI) ベースのシステムは大きな可能性を...

Microsoft が機械学習モデルを簡単に作成できる Lobe デスクトップ アプリケーションをリリース

なお、Lobe はインターネット接続やログインを必要とせず、現在は機械学習モデルの出力のみ可能である...

ルカン、アンドリュー・ン、その他370人以上が共同書簡に署名:AIの厳格な管理は危険、オープン化がその解毒剤

近年、AIをどのように監督するかについての議論はますます白熱しており、有力者の意見も大きく異なってい...

2021年に人工知能の倫理的問題、社会的価値、影響について読むべき8冊の本

[[387639]]人工知能に関するこれらの 8 冊の本は、AI に関連する倫理的問題、AI が雇用...

Appleは、来年の製品発売を目標に、独自の大規模モデルフレームワークをベースにしたApple GPTを秘密裏に開発していると噂されている。

Apple の大規模言語モデルと AI チャットボットに関する最新ニュースが届きました。本日、ブル...

6つのトラックと10のテクノロジー: インテリジェントボディと3D生成がAIを活性化し、空間コンピューティングがターミナル変革を切り開く

2000年前に生きていた古代人が1000年前に戻ったとしても、適応できるものは多くないかもしれません...

2021年のAIに関する10の大胆な予測の科学的分析 学術見出し

2020年は忘れられない年です。今年に入って、新型コロナウイルスの感染拡大に伴い、人工知能(AI)が...

...

...

新しいソフトロボット:手足を再生し、自然にカモフラージュできるヒトデ

Science Fiction Network は 1 月 5 日に報じました (Liu Yazhu...

...

転移学習に使用される 4 つのコンピュータ ビジョン フィールド モデル

導入SOTA 事前トレーニング済みモデルを使用して、転移学習を通じて現実世界のコンピューター ビジョ...