挑戦的なオープンソース機械学習プロジェクト 5 つで、2020 年を良いスタートを切りましょう。これらの機械学習プロジェクトは、Python プログラミングや NLP など、幅広い分野をカバーしています。 データサイエンスへの移行方法を模索する人が増えています。大学を卒業したばかりの人、業界に比較的最近参入した人、中堅の専門家、あるいは単に機械学習に興味がある人など、誰もがデータサイエンスの分野に参入したいと考えています。 最先端のフレームワークとライブラリに慣れていただくために、オープンソースの機械学習プロジェクト 5 つ(2020 年 1 月に作成)を厳選しました。 自然言語処理 (NLP) から Python プログラミングまで、あらゆることが学べます。 1. Reformer – PyTorch での効率的な移行 Transformer アーキテクチャは自然言語処理 (NLP) の状況を変えました。 BERT、XLNet、GPT-2 など、多くの NLP フレームワークが生まれました。 しかし、皆さんのほとんどが共感できる問題が 1 つあります。それは、これらのトランス駆動モデルが非常に大きいことです。 これらは最先端の結果をもたらしますが、それを学んで実装したいほとんどの人にとっては高価すぎて手の届かないものです。このプロジェクトの作成者は、独自のモデルを構築するのに役立つ、シンプルでありながら効果的な例とコード全体を提供しています。 2. PandaPy – 最も人気のあるPythonライブラリ 私は先週 PandaPy を発見し、現在のプロジェクトで使用しています。 これは、主流になる可能性を秘めた魅力的な Python ライブラリです。 混合データ型 (int、float、datetime、str など) を使用する機械学習プロジェクトに取り組んでいる場合は、Pandas ではなく PandaPy を使用してみてください。 これらのデータ型の場合、Pandas よりもメモリ消費量が約 3 分の 1 少なくなります。 興味深いと思われる 3 つの主要領域を以下に示します (これらのポイントは PandaPy GitHub リポジトリからそのまま引用したものです)。 1) 小さなデータセット(プラス、マルチサイン、対数など)での単純な計算では、PandaPyはPandasよりも25倍から80倍高速です。 2) 小さなデータセットのテーブル関数 (グループ化、ピボット、ドロップ、結合、フィル、ポピュレートなど) の場合、PandaPy は Pandas よりも 5 倍から 100 倍高速です。 3) PandaPyは、小規模なデータを扱うほとんどのユースケースでDask、Modin Ray、Pandasよりも高速です。 3. Google Earth Engine – 地理空間データを分析するための 300 以上の Jupyter ノートブック 素晴らしい GitHub リポジトリですね! 多くのデータ サイエンティスト志望者からソーシャル プラットフォーム上で連絡があり、地理空間分析を始めるにはどうすればよいかを尋ねられました。 これはペタバイト単位のデータが利用できる非常に興味深い分野です。 必要なのは、それをクリーンアップして分析するための構造化された方法だけです。この素晴らしいリポジトリには、Google Earth Engine データの操作例を含む 300 を超える Jupyter Notebook が集められています。 これらのノートブックは、コードを実行するために 3 つの Python ライブラリに依存しています。
GitHub リポジトリには、初心者が始めるのに役立つ Python コードの例が多数含まれています。 4. 自動ビジュアル分析 初心者向けのもう一つの高品質なデータ視覚化のアイデアをご紹介します。 データ探索ステップを自動化するというアイデアは、実質的なフレームワークがないまま、しばらく前から浮上していました。自動ビジュアル分析は、ビジュアル分析を AI 駆動型かつ自動化することを目的としています。 5. Fast Neptune – 機械学習プロジェクトの加速 再現性は、研究と産業の両方において、今日のあらゆる機械学習プロジェクトの重要な側面です。 実行するすべてのテスト、すべての反復、機械学習モデルのすべてのパラメーター、および結果を追跡する必要があります。 Fast Neptune ライブラリを使用すると、機械学習実験を開始するために必要なすべての情報をすばやく記録できます。 言い換えれば、Fast Neptune は、上記の段落を読んだときにおそらく尋ねた再現性の質問に対する答えです。 迅速な実験を行うために Fast Neptune が使用する機能は次のとおりです。
最先端のテクノロジーは急速に進歩し続けており、初心者にとってはそれに追いつくのが大変な場合があります。ハングリー精神を持ち続けましょう! |
>>: ファーウェイ、加算のみを使用するニューラルネットワークをオープンソース化:インターン生が開発を主導、効果は従来のCNNと同等
翻訳者 |ブガッティレビュー | Chonglou日常のオンラインのやり取りの中でチャットボットを目...
[[248121]] [[248122]]最近はアプリが満載のスマートフォンを持っている人はほとん...
人工知能は、その概念が最初の電子メールウイルスと同じくらい古いにもかかわらず、「ネットワークにおける...
人工知能は、大企業が従業員を管理する方法に大きな影響を与えています。 [[360624]]世界経済は...
データ中心の人工知能の構築は、今後のトレンドになりつつあります。 1年以上前、アンドリュー・ン氏は「...
[[314711]]ボストン・ダイナミクス社が開発したスポットは、ノルウェーの石油会社アーケル社で独...
5G が推進し主導する、デジタル技術変革の新世代が正式に到来しました。今日、インターネットの急速な変...
[[392070]]特徴選択は、データセット内で最も有用な特徴を見つけて選択するプロセスであり、機械...
この記事では、AI フレームワークの高レベルなアーキテクチャを詳しく説明し、その内部コンポーネントと...
マイクロソフトは11月15日、Google DeepMindのAlphaZeroにヒントを得て、コン...
自動運転については長い間議論されてきましたが、それが本当に人々の生活に不可欠なものになるのはいつでし...