Github のトップ 5 オープンソース機械学習プロジェクト!データ計算が最大80倍高速化!

Github のトップ 5 オープンソース機械学習プロジェクト!データ計算が最大80倍高速化!

挑戦的なオープンソース機械学習プロジェクト 5 つで、2020 年を良いスタートを切りましょう。これらの機械学習プロジェクトは、Python プログラミングや NLP など、幅広い分野をカバーしています。

データサイエンスへの移行方法を模索する人が増えています。大学を卒業したばかりの人、業界に比較的最近参入した人、中堅の専門家、あるいは単に機械学習に興味がある人など、誰もがデータサイエンスの分野に参入したいと考えています。

最先端のフレームワークとライブラリに慣れていただくために、オープンソースの機械学習プロジェクト 5 つ(2020 年 1 月に作成)を厳選しました。 自然言語処理 (NLP) から Python プログラミングまで、あらゆることが学べます。

1. Reformer – PyTorch での効率的な移行

Transformer アーキテクチャは自然言語処理 (NLP) の状況を変えました。 BERT、XLNet、GPT-2 など、多くの NLP フレームワークが生まれました。

しかし、皆さんのほとんどが共感できる問題が 1 つあります。それは、これらのトランス駆動モデルが非常に大きいことです。 これらは最先端の結果をもたらしますが、それを学んで実装したいほとんどの人にとっては高価すぎて手の届かないものです。このプロジェクトの作成者は、独自のモデルを構築するのに役立つ、シンプルでありながら効果的な例とコード全体を提供しています。

2. PandaPy – 最も人気のあるPythonライブラリ

私は先週 PandaPy を発見し、現在のプロジェクトで使用しています。 これは、主流になる可能性を秘めた魅力的な Python ライブラリです。

混合データ型 (int、float、datetime、str など) を使用する機械学習プロジェクトに取り組んでいる場合は、Pandas ではなく PandaPy を使用してみてください。 これらのデータ型の場合、Pandas よりもメモリ消費量が約 3 分の 1 少なくなります。

興味深いと思われる 3 つの主要領域を以下に示します (これらのポイントは PandaPy GitHub リポジトリからそのまま引用したものです)。

1) 小さなデータセット(プラス、マルチサイン、対数など)での単純な計算では、PandaPyはPandasよりも25倍から80倍高速です。

2) 小さなデータセットのテーブル関数 (グループ化、ピボット、ドロップ、結合、フィル、ポピュレートなど) の場合、PandaPy は Pandas よりも 5 倍から 100 倍高速です。

3) PandaPyは、小規模なデータを扱うほとんどのユースケースでDask、Modin Ray、Pandasよりも高速です。

3. Google Earth Engine – 地理空間データを分析するための 300 以上の Jupyter ノートブック

素晴らしい GitHub リポジトリですね! 多くのデータ サイエンティスト志望者からソーシャル プラットフォーム上で連絡があり、地理空間分析を始めるにはどうすればよいかを尋ねられました。 これはペタバイト単位のデータが利用できる非常に興味深い分野です。 必要なのは、それをクリーンアップして分析するための構造化された方法だけです。この素晴らしいリポジトリには、Google Earth Engine データの操作例を含む 300 を超える Jupyter Notebook が集められています。

[[318927]]

これらのノートブックは、コードを実行するために 3 つの Python ライブラリに依存しています。

  • アースエンジン Python API
  • フォリウム
  • ジーハイドロ

GitHub リポジトリには、初心者が始めるのに役立つ Python コードの例が多数含まれています。

4. 自動ビジュアル分析

初心者向けのもう一つの高品質なデータ視覚化のアイデアをご紹介します。 データ探索ステップを自動化するというアイデアは、実質的なフレームワークがないまま、しばらく前から浮上していました。自動ビジュアル分析は、ビジュアル分析を AI 駆動型かつ自動化することを目的としています。

5. Fast Neptune – 機械学習プロジェクトの加速

再現性は、研究と産業の両方において、今日のあらゆる機械学習プロジェクトの重要な側面です。 実行するすべてのテスト、すべての反復、機械学習モデルのすべてのパラメーター、および結果を追跡する必要があります。

Fast Neptune ライブラリを使用すると、機械学習実験を開始するために必要なすべての情報をすばやく記録できます。 言い換えれば、Fast Neptune は、上記の段落を読んだときにおそらく尋ねた再現性の質問に対する答えです。

迅速な実験を行うために Fast Neptune が使用する機能は次のとおりです。

  • コードが実行されているコンピュータに関するメタデータ(オペレーティングシステムと OS バージョンを含む)
  • 実験を実行するためのノートブックの要件
  • エクスペリエンス中に使用されるパラメータ。値を追跡する変数の名前を示します。
  • 実行時にログに記録するコード

最先端のテクノロジーは急速に進歩し続けており、初心者にとってはそれに追いつくのが大変な場合があります。ハングリー精神を持ち続けましょう!

<<:  テクノロジーがコロナウイルスと戦う10の方法

>>:  ファーウェイ、加算のみを使用するニューラルネットワークをオープンソース化:インターン生が開発を主導、効果は従来のCNNと同等

ブログ    
ブログ    

推薦する

インドのチームが人間のように考えることができる自動運転アルゴリズムを開発

[51CTO.com クイック翻訳]インド工科大学 (IIT マドラス) の研究者らは、人間のように...

強化学習と世界モデルにおける因果推論

1. 世界モデル「世界モデル」という用語は認知科学に由来しており、認知科学ではメンタルモデルと呼ばれ...

IEEE | わずか1秒でドローンは地上で宙返りできる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

2019 年に注目すべき 10 社のクールなロボット スタートアップ

[51CTO.com クイック翻訳] ロボットは登場しましたが、現在はほとんど世間の注目を浴びていま...

アルゴリズムの問​​題を解決するための Python 3 コード フレームワーク

序文現在インターンシップをしており、仕事量はそれほど多くないので、空き時間を利用してPATのウェブサ...

ジャック・マーがまた一人の世界クラスの科学者を採用しました。春節期間中に電車の切符を買うときにシステムクラッシュを心配する必要はもうありません!

アリババが中国だけでなく国際的にも素晴らしいインターネット企業であることは誰もが知っています。しかし...

AI の可能性を最大限に引き出す: 企業での導入を成功させる 5 つの鍵

ビジネスとテクノロジーに関心のある人なら誰でも、AI がすでに業界や日常生活に大きな変化をもたらして...

騒ぎの裏で、2020年はケータリングロボットにとって楽な年になるだろうか?

最近、ロボットに特化したレストランが広州に正式にオープンしました。客の出迎えから調理まで、一連の作業...

...

AIは「気質」に基づいて赤ちゃんの年齢と性別を正確に識別できる

PLOS ONE に掲載された新しい研究では、機械学習を使用して 4,438 人の乳児の「気質」デー...

...

GitHub Copilot の盗作が確認されました! GitHub: 私たちの AI はコードを「暗唱」しません

[[409261]] GitHub Copilot は、コードを自動生成するという強力な機能により、...

...

AIに対する期待や考え

[[398945]]中国ビジネスネットワーク特別コメンテーター、宋清輝(経済学者)最近、第5回世界知...

世の中に人工知能は存在しないのか?私たちはディープラーニングに騙されているのでしょうか?

著者のJean-Christophe Baillie氏は、Novaquarkの創設者兼社長であり、「...